Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network

[1]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[2]  Role of the thalamic reticular nucleus in relations between the mesencephalic reticular formation and lateral geniculate body , 1988, Bulletin of Experimental Biology and Medicine.

[3]  W. Freeman Nonlinear gain mediating cortical stimulus-response relations , 1979, Biological Cybernetics.

[4]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[5]  C. Koch,et al.  The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus , 2004, Experimental Brain Research.

[6]  E. van Luijtelaar,et al.  Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats , 2003, Behavior genetics.

[7]  T. Sejnowski,et al.  Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. , 2003, Physiological reviews.

[8]  A. Coenen,et al.  Ictal stimulus processing during spike-wave discharges in genetic epileptic rats , 2003, Behavioural Brain Research.

[9]  R. Spreafico,et al.  Modification of GABAB1 and GABAB2 receptor subunits in the somatosensory cerebral cortex and thalamus of rats with absence seizures (GAERS) , 2003, Epilepsy Research.

[10]  Vincenzo Crunelli,et al.  Targeting thalamic nuclei is not sufficient for the full anti-absence action of ethosuximide in a rat model of absence epilepsy , 2003, Epilepsy Research.

[11]  Brigitte M. Bouwman,et al.  The effects of vigabatrin on type II spike wave discharges in rats , 2003, Neuroscience Letters.

[12]  Maxim Bazhenov,et al.  Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[14]  V. Crunelli,et al.  Childhood absence epilepsy: Genes, channels, neurons and networks , 2002, Nature Reviews Neuroscience.

[15]  Enhancement of spike and wave discharges by microinjection of bicuculline into the reticular nucleus of rats with absence epilepsy , 2002, Neuroscience Letters.

[16]  V. Crunelli,et al.  Block of Thalamic T-Type Ca2+ Channels by Ethosuximide Is Not the Whole Story , 2002, Epilepsy currents.

[17]  Marcello Massimini,et al.  Spatial Buffering during Slow and Paroxysmal Sleep Oscillations in Cortical Networks of Glial Cells In Vivo , 2002, The Journal of Neuroscience.

[18]  Cortico-thalamic mechanisms underlying generalized spike-wave discharges of absence epilepsy. A lesional and signal analytical approach in the WAG/Rij rat , 2002 .

[19]  Stefan Schaal The handbook of brain theory and neural networks , 2002 .

[20]  David A McCormick,et al.  Cortical and subcortical generators of normal and abnormal rhythmicity. , 2002, International review of neurobiology.

[21]  Respiratory alkalosis. , 2001, Respiratory care.

[22]  T. Sejnowski,et al.  Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations , 2001 .

[23]  D. Prince,et al.  Kinetic and pharmacological properties of GABA(A) receptors in single thalamic neurons and GABA(A) subunit expression. , 2001, Journal of neurophysiology.

[24]  Jaroslaw Zygierewicz,et al.  A model of sleep spindles generation , 2001, Neurocomputing.

[25]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[26]  Alain Destexhe,et al.  LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations , 2001, Neurocomputing.

[27]  M A Rogawski,et al.  Generalized Epileptic Disorders: An Update , 2001, Epilepsia.

[28]  H. Pape,et al.  Contribution of GABAA and GABAB Receptors to Thalamic Neuronal Activity during Spontaneous Absence Seizures in Rats , 2001, The Journal of Neuroscience.

[29]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[30]  Elizabeth Thomas,et al.  Increased Synchrony with Increase of a Low-Threshold Calcium Conductance in a Model Thalamic Network: A Phase-Shift Mechanism , 2000, Neural Computation.

[31]  Peter L Carlen,et al.  Gap junctions, synchrony and seizures , 2000, Trends in Neurosciences.

[32]  C. Marescaux,et al.  Pertussis toxin decreases absence seizures and GABAB receptor binding in thalamus of a genetically prone rat (GAERS) , 1999, Neuropharmacology.

[33]  R. Wennberg,et al.  Type III intermittency in human partial epilepsy , 1999, The European journal of neuroscience.

[34]  David A. McCormick,et al.  Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production , 1999, Nature Neuroscience.

[35]  A. Destexhe,et al.  Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? , 1999, The European journal of neuroscience.

[36]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[37]  D. Contreras,et al.  Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. , 1998, Journal of neurophysiology.

[38]  H R Parri,et al.  On the Action of the Anti-Absence Drug Ethosuximide in the Rat and Cat Thalamus , 1998, The Journal of Neuroscience.

[39]  D. Pinault,et al.  Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy , 1998, The Journal of physiology.

[40]  L. Danober,et al.  Pathophysiological mechanisms of genetic absence epilepsy in the rat , 1998, Progress in Neurobiology.

[41]  D. McCormick,et al.  Periodicity of Thalamic Synchronized Oscillations: the Role of Ca2+-Mediated Upregulation of Ih , 1998, Neuron.

[42]  Maria V. Sanchez-Vives,et al.  Inhibitory Interactions between Perigeniculate GABAergic Neurons , 1997, The Journal of Neuroscience.

[43]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[44]  M. Vergnes,et al.  Opposite effects of GABAB receptor antagonists on absences and convulsive seizures. , 1997, European journal of pharmacology.

[45]  D. Contreras,et al.  Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. , 1997, Journal of neurophysiology.

[46]  F. H. Lopes da Silva,et al.  Alpha rhythms: noise, dynamics and models. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[47]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[48]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[49]  A. Coenen,et al.  Effects of the GABAB antagonist CGP 35348 on sleep-wake states, behaviour, and spike-wave discharges in old rats , 1996, Brain Research Bulletin.

[50]  T. Sejnowski,et al.  Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. , 1996, Journal of neurophysiology.

[51]  The selective GABAB antagonist CGP-35348 blocks spike-wave bursts in the cholesterol synthesis rat absence epilepsy model , 1996, Brain Research.

[52]  D. McCormick,et al.  What Stops Synchronized Thalamocortical Oscillations? , 1996, Neuron.

[53]  J. Rinzel,et al.  Propagation of spindle waves in a thalamic slice model. , 1996, Journal of neurophysiology.

[54]  Heiko J. Luhmann,et al.  Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy , 1995, Epilepsy Research.

[55]  J. Rinzel,et al.  Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. de Curtis,et al.  Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  D. McCormick,et al.  Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. , 1995, The Journal of physiology.

[58]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[59]  C.Justin Lee,et al.  Postnatal development of GABAA receptor function in somatosensory thalamus and cortex: whole-cell voltage-clamp recordings in acutely isolated rat neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  D Contreras,et al.  Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[62]  D. Prince,et al.  Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. , 1994, Journal of neurophysiology.

[63]  C. Rosenberg,et al.  Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 3rd Ed. , 1994 .

[64]  T. Sejnowski,et al.  A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. , 1993, Biophysical journal.

[65]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[66]  D. McCormick,et al.  Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. , 1993, The Journal of physiology.

[67]  L. Danober,et al.  GABAA receptor impairment in the genetic absence epilepsy rats from Strasbourg (GAERS): an immunocytochemical and receptor binding autoradiographic study , 1993, Epilepsy Research.

[68]  W. A. Wilson,et al.  The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. , 1992, Science.

[69]  A. Depaulis,et al.  Involvement of intrathalamic GABA b neurotransmission in the control of absence seizures in the rat , 1992, Neuroscience.

[70]  O. Snead Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. , 1992, European journal of pharmacology.

[71]  M. Vergnes,et al.  Cortical and thalamic lesions in rats with genetic absence epilepsy. , 1992, Journal of neural transmission. Supplementum.

[72]  A. Depaulis,et al.  Genetic absence epilepsy in rats from Strasbourg--a review. , 1992, Journal of neural transmission. Supplementum.

[73]  G Avanzini,et al.  Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves. , 1992, Journal of neural transmission. Supplementum.

[74]  A. Coenen,et al.  Spike-wave discharges and sleep-wake states in rats with absence epilepsy , 1991, Epilepsy Research.

[75]  J. Rinzel,et al.  A model of the T-type calcium current and the low-threshold spike in thalamic neurons. , 1991, Journal of neurophysiology.

[76]  A. Coenen,et al.  Absence epilepsy and the level of vigilance in rats of the WAG/Rij strain , 1991, Neuroscience & Biobehavioral Reviews.

[77]  D. Prince,et al.  Mechanism of Block of Thalamic T-Type Ca2+ Channels by Petit Mal Anticonvulsants , 1991 .

[78]  G. Buzsáki,et al.  Petit mal epilepsy and parkinsonian tremor: Hypothesis of a common pacemaker , 1990, Neuroscience.

[79]  D. Prince,et al.  Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: calcium current reduction , 1990, British journal of pharmacology.

[80]  Massimo Avoli,et al.  Generalized Epilepsy: Neurobiological Approaches , 1990 .

[81]  George K. Kostopoulos,et al.  Thalamocortical Relationships in Generalized Epilepsy with Bilaterally Synchronous Spike-and-Wave Discharge , 1990 .

[82]  D. Prince,et al.  Characterization of ethosuximide reduction of low‐threshold calcium current in thalamic neurons , 1989, Annals of neurology.

[83]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[84]  D. McCormick,et al.  Actions of acetylcholine in the guinea‐pig and cat medial and lateral geniculate nuclei, in vitro. , 1987, The Journal of physiology.

[85]  A. Coenen,et al.  Two types of electrocortical paroxysms in an inbred strain of rats , 1986, Neuroscience Letters.

[86]  David A. McCormick,et al.  Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance , 1986, Nature.

[87]  U. Heinemann,et al.  Stimulus- and amino acid-induced calcium and potassium changes in rat neocortex. , 1985, Journal of neurophysiology.

[88]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[89]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[90]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[91]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[92]  R. Joynt Epilepsy and Related Disorders , 1961 .

[93]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.