Optimizing Control Strategy Using Statistical Model Checking

This paper proposes a new efficient approach to optimize energy consumption for energy aware buildings. Our approach relies on stochastic hybrid automata for representing energy aware systems. The model is parameterized by several cost values that need to be optimized in order to minimize energy consumption. Our approach exploits a stochastic semantic together with simulation in order to estimate the best value for such parameters. Contrary to existing techniques that would estimate energy consumption for each value of the parameters, our approach relies on a new statistical engine that exploits ANOVA, a technique that can reduce the number of runs needed by the comparison algorithm to perform the estimates. Our approach has been implemented and our experiments show that we clearly outperform the naive approach.

[1]  Ansgar Fehnker,et al.  Benchmarks for Hybrid Systems Verification , 2004, HSCC.

[2]  Kim G. Larsen,et al.  Statistical Model Checking for Networks of Priced Timed Automata , 2011, FORMATS.

[3]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[4]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[5]  Håkan L. S. Younes,et al.  Statistical probabilistic model checking with a focus on time-bounded properties , 2006, Inf. Comput..

[6]  Kim G. Larsen,et al.  Time for Statistical Model Checking of Real-Time Systems , 2011, CAV.

[7]  Axel Legay,et al.  Statistical Model Checking: An Overview , 2010, RV.

[8]  Jirí Srba,et al.  Comparing the Expressiveness of Timed Automata and Timed Extensions of Petri Nets , 2008, FORMATS.

[9]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[10]  Wa Halang,et al.  REAL-TIME SYSTEMS .2. , 1989 .

[11]  William T. Ziemba,et al.  Applications and case studies , 2007 .

[12]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[13]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[14]  Kim G. Larsen,et al.  Runtime Verification of Biological Systems , 2012, ISoLA.

[15]  Holger Hermanns,et al.  A Modest Approach to Checking Probabilistic Timed Automata , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[16]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[17]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[18]  Kim G. Larsen,et al.  Statistical Model Checking for Stochastic Hybrid Systems , 2012, HSB.

[19]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[20]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[21]  Kim G. Larsen,et al.  Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic , 2012, LPAR.

[22]  Kim G. Larsen,et al.  Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach , 2012, IWIGP.

[23]  Kim G. Larsen,et al.  Rewrite-Based Statistical Model Checking of WMTL , 2012, RV.

[24]  Joost-Pieter Katoen,et al.  The Ins and Outs of the Probabilistic Model Checker MRMC , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[25]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[26]  Kim G. Larsen,et al.  Schedulability of Herschel-Planck Revisited Using Statistical Model Checking , 2012, ISoLA.

[27]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[28]  Mahesh Viswanathan,et al.  Statistical Model Checking of Black-Box Probabilistic Systems , 2004, CAV.