The Effect of Pulse Sequence Parameters and Contrast Agent Dose on Percentage Signal Recovery in DSC-MRI: Implications for Clinical Applications

BACKGROUND AND PURPOSE: Both technical and pathophysiologic factors affect PSR in DSC-MR imaging. We aimed to determine how TE, flip angle (α), and contrast dose impact PSR in high-grade gliomas. MATERIALS AND METHODS: We retrospectively computed PSR maps for 22 patients with high-grade gliomas, comparing 3 DSC-MR imaging methods by using single-dose gadodiamide without preload administration: A (n = 7), α = 35°, TE = 54 ms; B (n = 5), α = 72°, TE = 30 ms; C (n = 10), α = 90°, TE = 30 ms. Methods A-C served as preload for subsequent dynamic imaging using method D (method C parameters but with double-dose contrast). We compared first- and second-injection tumor PSR for methods C and D (paired t test) and tumor PSR for both injections grouped by the first-injection acquisition method (3-group nonparametric 1-way ANOVA). We compared PSR in tumor and normal brain for each first- and second-injection method group (paired t test). RESULTS: First-injection PSR in tumor and normal brain differed significantly for methods B (P = .01) and C (P = .05), but not A (P = .71). First-injection tumor PSR increased with T1 weighting with a significant main effect of method groupings (P = .0012), but there was no significant main effect for first-injection normal brain (P = .93), or second-injection tumor (P = .95) or normal brain (P = .13). In patients scanned with methods C and D, first-injection PSR significantly exceeded second-injection PSR for tumor (P = .037) and normal brain (P < .001). CONCLUSIONS: PSR strongly depends on the T1 weighting of DSC-MR imaging, including pulse sequence (TE, α) and contrast agent (dose, preload) parameters, with implications for protocol design and the interpretation and comparison of PSR values across tumor types and imaging centers.

[1]  M R Segal,et al.  Distinguishing Recurrent Intra-Axial Metastatic Tumor from Radiation Necrosis Following Gamma Knife Radiosurgery Using Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging , 2008, American Journal of Neuroradiology.

[2]  J. Boxerman,et al.  The Role of Preload and Leakage Correction in Gadolinium-Based Cerebral Blood Volume Estimation Determined by Comparison with MION as a Criterion Standard , 2012, American Journal of Neuroradiology.

[3]  B. D. Ward,et al.  Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. , 2004, AJNR. American journal of neuroradiology.

[4]  G. Johnson,et al.  Dynamic susceptibility contrast MR imaging: Correlation of signal intensity changes with cerebral blood volume measurements , 2000, Journal of magnetic resonance imaging : JMRI.

[5]  M. Berger,et al.  Differentiation of Glioblastoma Multiforme and Single Brain Metastasis by Peak Height and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging , 2007, American Journal of Neuroradiology.

[6]  K. Schmainda,et al.  Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. , 2008, Radiology.

[7]  Y Yonekura,et al.  Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: a preliminary study. , 2001, AJNR. American journal of neuroradiology.

[8]  Glyn Johnson,et al.  Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2004, AJNR. American journal of neuroradiology.

[9]  Guy Cosnard,et al.  Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. , 2012, Journal of neuroradiology. Journal de neuroradiologie.

[10]  T E Yankeelov,et al.  A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation , 2009, Physics in medicine and biology.

[11]  Sean S. Park,et al.  Differentiation between intra-axial metastatic tumor progression and radiation injury following fractionated radiation therapy or stereotactic radiosurgery using MR spectroscopy, perfusion MR imaging or volume progression modeling. , 2011, Magnetic resonance imaging.

[12]  S Ekholm,et al.  Percentage Signal Recovery Derived from MR Dynamic Susceptibility Contrast Imaging Is Useful to Differentiate Common Enhancing Malignant Lesions of the Brain , 2011, American Journal of Neuroradiology.

[13]  Xiang Liu,et al.  MR perfusion‐weighted imaging may help in differentiating between nonenhancing gliomas and nonneoplastic lesions in the cervicomedullary junction , 2011, Journal of magnetic resonance imaging : JMRI.

[14]  P. Renshaw,et al.  Sequential dynamic susceptibility contrast MR experiments in human brain: Residual contrast agent effect, steady state, and hemodynamic perturbation , 1995, Magnetic resonance in medicine.

[15]  Susan M. Chang,et al.  Dynamic susceptibility contrast perfusion imaging of radiation effects in normal‐appearing brain tissue: Changes in the first‐pass and recirculation phases , 2005, Journal of magnetic resonance imaging : JMRI.

[16]  M A Viergever,et al.  Simultaneous quantitative cerebral perfusion and Gd‐DTPA extravasation measurement with dual‐echo dynamic susceptibility contrast MRI , 2000, Magnetic resonance in medicine.

[17]  A P Pathak,et al.  Utility of simultaneously acquired gradient‐echo and spin‐echo cerebral blood volume and morphology maps in brain tumor patients , 2000, Magnetic resonance in medicine.

[18]  B. Rosen,et al.  Signal‐to‐noise analysis of cerebral blood volume maps from dynamic NMR imaging studies , 1997, Journal of magnetic resonance imaging : JMRI.

[19]  R M Weisskoff,et al.  Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. , 2006, AJNR. American journal of neuroradiology.

[20]  B. Tang,et al.  Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging , 2009, Acta radiologica.

[21]  M. Berger,et al.  Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. , 2009, Radiology.