Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method

Exact method for modal analysis of plates with arbitrary boundary conditions.Enhancement of the Wittrick-Williams algorithm by resolving the J0 count elegantly.Securing exact solutions for free vibration of plates for benchmark purposes.The method has two orders of magnitude higher computational efficiency than the FEM.Discussion and conclusions on a wide range of existing analytical and exact methods. An exact method for free vibration analysis of plates with arbitrary boundary conditions is presented. This is achieved by integrating the spectral method into the classical dynamic stiffness method. The formulation satisfies the governing differential equation exactly and any arbitrary boundary conditions are satisfied in a series sense. The Wittrick-Williams algorithm is enhanced with several elegant techniques to obtain solutions. The exactness and computational efficiency of the method are demonstrated by comparing results obtained from other methods. Finally, mathematical and physical insights are gained and significant conclusions are drawn for various analytical methods for free vibration analysis of plates.

[1]  J. R. Banerjee,et al.  Layer-wise dynamic stiffness solution for free vibration analysis of laminated composite plates , 2014 .

[2]  Rhys Jones,et al.  Application of the extended Kantorovich method to the vibration of clamped rectangular plates , 1976 .

[3]  A. Kerr An extended Kantorovich method for the solution of eigenvalue problems , 1969 .

[4]  B. A. Rankin Ramanujan: Twelve lectures on subjects suggested by his life and work. By G. H. Hardy. (Chelsea Publishing Company, N.Y.) , 1961 .

[5]  Jean Nicolas,et al.  A HIERARCHICAL FUNCTIONS SET FOR PREDICTING VERY HIGH ORDER PLATE BENDING MODES WITH ANY BOUNDARY CONDITIONS , 1997 .

[6]  G. Lamé,et al.  Leçons Sur la Théorie Mathématique de L'élasticité des Corps Solides , 2009 .

[7]  J. R. Banerjee,et al.  Dynamic stiffness elements and their applications for plates using first order shear deformation theory , 2011 .

[8]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[9]  J. R. Banerjee,et al.  Clamped-clamped Natural Frequencies Of A Bending-torsion Coupled Beam , 1994 .

[10]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.

[11]  J. R. Banerjee,et al.  An exact spectral dynamic stiffness theory for composite plate-like structures with arbitrary non-uniform elastic supports, mass attachments and coupling constraints , 2016 .

[12]  Rama B. Bhat,et al.  VIBRATION OF RECTANGULAR PLATES USING PLATE CHARACTERISTIC FUNCTIONS AS SHAPE FUNCTIONS IN THE RAYLEIGH–RITZ METHOD , 1996 .

[13]  R. D. Mindlin Flexural vibrations of rectangular plates with free edges , 1986 .

[14]  Y. K. Cheung,et al.  Vibrations of rectangular plates with elastic intermediate line-supports and edge constraints , 2000 .

[15]  G. Hardy,et al.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work , 1978 .

[16]  K. Bhaskar,et al.  Accurate and elegant free vibration and buckling studies of orthotropic rectangular plates using untruncated infinite series , 2008 .

[17]  D. Zhou,et al.  Vibrations of point-supported rectangular plates with variable thickness using a set of static tapered beam functions , 2002 .

[18]  F. W. Williams,et al.  Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings , 1974 .

[19]  Marta B. Rosales,et al.  Arbitrary precision frequencies of a free rectangular thin plate , 2000 .

[20]  Ding Zhou,et al.  Natural frequencies of elastically restrained rectangular plates using a set of static beam functions in the Rayleigh-Ritz method , 1995 .

[21]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[22]  F. W. Williams,et al.  A GENERAL ALGORITHM FOR COMPUTING NATURAL FREQUENCIES OF ELASTIC STRUCTURES , 1971 .

[23]  C. Bert,et al.  Frequency Equations and Modes of Free Vibrations of Rectangular Plates with Various Edge Conditions , 1994 .

[24]  W. L. Li Vibration analysis of rectangular plates with general elastic boundary supports , 2004 .

[25]  K. M. Liew,et al.  Vibration Analysis of Plates by the pb-2 Rayleigh-Ritz Method: Mixed Boundary Conditions,Reentrant Corners, and Internal Curved Supports , 1992 .

[26]  W. Ostachowicz,et al.  Guided Waves in Structures for SHM: The Time - domain Spectral Element Method , 2012 .

[27]  U. Lee Spectral Element Method in Structural Dynamics , 2009 .

[28]  K. M. Liew,et al.  A pb-2 Ritz Formulation for Flexural Vibration of Shallow Cylindrical Shells of Rectangular Planform , 1994 .

[29]  C. Lim,et al.  On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates , 2009 .

[30]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[31]  C. Lim Symplectic elasticity approach for free vibration of rectangular plates , 2010 .

[32]  Lorenzo Dozio,et al.  On the use of the Trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates , 2011 .

[33]  W. Zhong Duality system in applied mechanics and optimal control , 2004 .

[34]  S. M. Dickinson,et al.  On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates , 1986 .

[35]  Xinsheng Xu,et al.  Symplectic Elasticity: Theory and Applications , 2010 .

[36]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[37]  K. M. Liew,et al.  pb-2 Rayleigh- Ritz method for general plate analysis , 1993 .

[38]  G. D. Xistris,et al.  VIBRATION OF RECTANGULAR PLATES BY REDUCTION OF THE PLATE PARTIAL DIFFERENTIAL EQUATION INTO SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS , 1997 .

[39]  Guo-Wei Wei,et al.  Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates , 2004 .

[40]  J. R. Banerjee,et al.  A new method for free vibration and buckling analysis of rectangular orthotropic plates , 2015 .

[41]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[42]  Andrew Y. T. Leung,et al.  Dynamic Stiffness and Substructures , 1993 .

[43]  F. W. Williams,et al.  Natural frequencies of frames with axially loaded Timoshenko Members , 1973 .

[44]  Arthur W. Leissa,et al.  The free vibration of rectangular plates , 1973 .

[45]  Zhou Ding,et al.  NATURAL FREQUENCIES OF RECTANGULAR PLATES USING A SET OF STATIC BEAM FUNCTIONS IN RAYLEIGH-RITZ METHOD , 1996 .

[46]  D. J. Gorman Free vibration analysis of the completely free rectangular plate by the method of superposition , 1978 .

[47]  S. M. Dickinson,et al.  On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method , 1990 .

[48]  Shikazo Iguchi Die Eigenschwingungen und Klangfiguren der vierseitig freien rechteckigen Platte , 1942 .

[49]  J. R. Banerjee,et al.  An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies – Part I: Theory , 2015 .

[50]  Bo Liu,et al.  New exact solutions for free vibrations of rectangular thin plates by symplectic dual method , 2009 .

[51]  K. M. Liew,et al.  Free vibration analysis of rectangular plates using orthogonal plate function , 1990 .

[52]  Ronald F. Gibson,et al.  An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions , 2009 .

[53]  Yufeng Xing,et al.  Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions , 2013 .

[54]  D. J. Gorman,et al.  A review of the superposition method for computing free vibration eigenvalues of elastic structures , 2012 .

[55]  D. J. Gorman Free vibration analysis of cantilever plates by the method of superposition , 1976 .

[56]  Jingtao Du,et al.  An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports , 2009 .

[57]  Marta B. Rosales,et al.  Vibration of orthotropic plates: discussion on the completeness of the solutions used in direct methods , 2003 .

[58]  D. J. Gorman,et al.  Vibration Analysis of Plates by the Superposition Method , 1999 .

[59]  J. R. Banerjee,et al.  An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies , 2013 .

[60]  W. Ritz,et al.  Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern , 1909 .

[61]  Charles W. Bert,et al.  Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method , 1998 .

[62]  J. R. Banerjee,et al.  Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and applications , 2012 .

[63]  G. B. Warburton,et al.  The Vibration of Rectangular Plates , 1954 .

[64]  A. Bahrami,et al.  Comments on “New exact solutions for free vibrations of thin orthotropic rectangular plates” , 2014 .

[65]  The boundedness of Gorman's Superposition method for free vibration analysis of plates , 2012 .

[66]  D. J. Gorman FREE VIBRATION ANALYSIS OF COMPLETELY FREE RECTANGULAR PLATES BY THE SUPERPOSITION–GALERKIN METHOD , 2000 .

[67]  Stefan Hurlebaus,et al.  AN EXACT SERIES SOLUTION FOR CALCULATING THE EIGENFREQUENCIES OF ORTHOTROPIC PLATES WITH COMPLETELY FREE BOUNDARY , 2001 .

[68]  R. Bhat Natural frequencies of rectangular plates using characteristic orthogonal polynomials in rayleigh-ritz method , 1986 .

[69]  Toshiyuki Sakata,et al.  Vibrations of clamped orthotropic rectangular plates , 1988 .

[70]  Sinniah Ilanko,et al.  Proof of convergence for a set of admissible functions for the Rayleigh-Ritz analysis of beams and plates and shells of rectangular planform , 2015 .

[71]  Yufeng Xing,et al.  New exact solutions for free vibrations of thin orthotropic rectangular plates , 2009 .

[72]  Rama B. Bhat,et al.  Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation , 1996 .

[73]  Yoshihiro Narita,et al.  Vibrations of completely free shallow shells of rectangular planform , 1984 .