Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria

SUMMARY Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, biochemical, and structural information on sucrase genes and enzymes from various LAB and their fructan and α-glucan products is reviewed. The GS and FS enzymes are both glycoside hydrolase enzymes that act on the same substrate (sucrose) and catalyze (retaining) transglycosylation reactions that result in polysaccharide formation, but they possess completely different protein structures. GS enzymes (family GH70) are large multidomain proteins that occur exclusively in LAB. Their catalytic domain displays clear secondary-structure similarity with α-amylase enzymes (family GH13), with a predicted permuted (β/α)8 barrel structure for which detailed structural and mechanistic information is available. Emphasis now is on identification of residues and regions important for GS enzyme activity and product specificity (synthesis of α-glucans differing in glycosidic linkage type, degree and type of branching, glucan molecular mass, and solubility). FS enzymes (family GH68) occur in both gram-negative and gram-positive bacteria and synthesize β-fructan polymers with either β-(2→6) (inulin) or β-(2→1) (levan) glycosidic bonds. Recently, the first high-resolution three-dimensional structures have become available for FS (levansucrase) proteins, revealing a rare five-bladed β-propeller structure with a deep, negatively charged central pocket. Although these structures have provided detailed mechanistic insights, the structural features in FS enzymes dictating the synthesis of either β-(2→6) or β-(2→1) linkages, degree and type of branching, and fructan molecular mass remain to be identified.

[1]  K. Fukushima,et al.  Cloning and nucleotide sequence analysis of the Streptococcus sobrinus gtfU gene that produces a highly branched water-soluble glucan. , 2002, Biochimica et biophysica acta.

[2]  D. Shah,et al.  Glucan binding domain of streptococcal glucosyltransferases , 2002 .

[3]  K. Yamane,et al.  Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of the replacement on pH dependence and transition-state stabilization. , 1993, Biochemistry.

[4]  J. Yun,et al.  Acceptor reactions of a novel transfructosylating enzyme from Bacillus sp. , 2004, Biotechnology Letters.

[5]  H. Jenkinson,et al.  Mutants of Streptococcus gordonii Challis over-producing glucosyltransferase. , 1991, Journal of general microbiology.

[6]  H. Jespersen,et al.  A circularly permuted α‐amylase‐type α/β‐barrel structure in glucan‐synthesizing glucosyltransferases , 1996 .

[7]  H. Tsumori,et al.  Nigerooligosaccharide acceptor reaction of Streptococcus sobrinus glucosyltransferase GTF-I. , 2000, Carbohydrate research.

[8]  R. Vogel,et al.  Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli , 2005, Journal of applied microbiology.

[9]  R. Wendenburg,et al.  Gene Cloning and Functional Characterization by Heterologous Expression of the Fructosyltransferase of Aspergillus sydowi IAM 2544 , 2001, Applied and Environmental Microbiology.

[10]  H. Ohta,et al.  Structure and enzymatic properties of genetically truncated forms of the water-insoluble glucan-synthesizing glucosyltransferase from Streptococcus sobrinus. , 1999, Journal of biochemistry.

[11]  R. Dedonder [86] Levansucrase from Bacillus subtilis , 1966 .

[12]  A. Kimura,et al.  Cloning and expression of levansucrase from Leuconostoc mesenteroides B-512 FMC in Escherichia coli. , 2005, Biochimica et biophysica acta.

[13]  P. Monsan,et al.  Effect of Leuconostoc mesenteroides NRRL B-512F Dextransucrase Carboxy-Terminal Deletions on Dextran and Oligosaccharide Synthesis , 1998, Applied and Environmental Microbiology.

[14]  H. Yanase,et al.  Purification, crystallization, and properties of the extracellular levansucrase from Zymomonas mobilis , 1992 .

[15]  T. Pons,et al.  Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. , 2005, The Biochemical journal.

[16]  C. Olvera,et al.  Molecular Characterization of Inulosucrase from Leuconostoc citreum: a Fructosyltransferase within a Glucosyltransferase , 2003, Journal of bacteriology.

[17]  J. Ferretti,et al.  Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans , 1990, Infection and immunity.

[18]  J. Robyt Mechanism and action of glucansucrases , 1996 .

[19]  B. Svensson Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability , 1994, Plant Molecular Biology.

[20]  M. Remaud-Siméon,et al.  Conserved Repeat Motifs and Glucan Binding by Glucansucrases of Oral Streptococci and Leuconostoc mesenteroides , 2004, Journal of bacteriology.

[21]  K. Fütterer,et al.  Structural framework of fructosyl transfer in Bacillus subtilis levansucrase , 2003, Nature Structural Biology.

[22]  L. Dijkhuizen,et al.  Kinetic properties of an inulosucrase from Lactobacillus reuteri 121 , 2003, FEBS letters.

[23]  B. McCleary,et al.  Advanced dietary fibre technology , 2000 .

[24]  N. J. Chatterton,et al.  Science and Technology of Fructans , 1993 .

[25]  I. Sutherland Bacterial exopolysaccharides. , 1972, Advances in microbial physiology.

[26]  Isao Karube,et al.  Enzyme sensors for environmental analysis , 2000 .

[27]  H. M. Tsuchiya,et al.  Enzymatic synthesis of dextran; acceptor specificity and chain initiation. , 1953, The Journal of biological chemistry.

[28]  P. Giffard,et al.  The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system , 1993, Journal of bacteriology.

[29]  M. Vignon,et al.  Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I , 1999, Applied Microbiology and Biotechnology.

[30]  L. Boeckner,et al.  Inulin: a review of nutritional and health implications. , 2001, Advances in food and nutrition research.

[31]  B. M. McKenna Texture in food , 2003 .

[32]  S. Morel,et al.  Glucosylation of α-butyl- and α-octyl-d-glucopyranosides by dextransucrase and alternansucrase from Leuconostoc mesenteroides , 2003 .

[33]  H. Kuramitsu,et al.  Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. , 1990, Journal of general microbiology.

[34]  F. Schmid,et al.  SlyD proteins from different species exhibit high prolyl isomerase and chaperone activities. , 2006, Biochemistry.

[35]  T. Imanaka,et al.  Analysis of the active center of Bacillus stearothermophilus neopullulanase , 1991, Journal of bacteriology.

[36]  H. Leemhuis,et al.  Hydrophobic Amino Acid Residues in the Acceptor Binding Site Are Main Determinants for Reaction Mechanism and Specificity of Cyclodextrin-glycosyltransferase* , 2001, The Journal of Biological Chemistry.

[37]  J. Robyt Essentials of carbohydrate chemistry , 1997 .

[38]  A. Chesson,et al.  Biotechnology in animal feeds and animal feeding. , 1995 .

[39]  S. W. Lin,et al.  Inhibition of glucosyltransferase activities of Streptococcus mutans by a monoclonal antibody to a subsequence peptide , 1993, Infection and immunity.

[40]  L. Dijkhuizen,et al.  Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. , 2004, Microbiology.

[41]  S. Yamamoto,et al.  Structures of heterooligosaccharides synthesized by levansucrase. , 1981, Journal of biochemistry.

[42]  R. Chambert,et al.  Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. , 1991, The Biochemical journal.

[43]  T. Walseth,et al.  Production, purification, and properties of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. , 1979, Carbohydrate research.

[44]  M. Roberfroid,et al.  Nutritional and Health Benefits of Inulin and Oligofructose Concepts in Functional Foods: The Case of Inulin and Oligofructose 1 , 1999 .

[45]  P. Giffard,et al.  Definition of a Fundamental Repeating Unit in Streptococcal Glucosyltransferase Glucan-binding Regions and Related Sequences , 1994, Journal of dental research.

[46]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[47]  Š. Janeček,et al.  Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. , 2001, Biochimica et biophysica acta.

[48]  M. Matsushita,et al.  Water-soluble and water-insoluble glucans produced by Escherichia coli recombinant dextransucrases from Leuconostoc mesenteroides NRRL B-512F. , 2001, Carbohydrate research.

[49]  J. Cerning Exocellular polysaccharides produced by lactic acid bacteria. , 1990, FEMS microbiology reviews.

[50]  G. Dougan,et al.  Characterization of glucosyltransferase expressed from a Streptococcus sobrinus gene cloned in Escherichia coli. , 1987, Journal of general microbiology.

[51]  L. Dijkhuizen,et al.  Biochemical and Structural Characterization of the Glucan and Fructan Exopolysaccharides Synthesized by theLactobacillus reuteri Wild-Type Strain and by Mutant Strains , 1999, Applied and Environmental Microbiology.

[52]  P. Monsan,et al.  Glucansucrases: molecular engineering and oligosaccharide synthesis , 2000 .

[53]  D. Steinberg,et al.  Regulation of fructosyltransferase activity by carbohydrates, in solution and immobilized on hydroxyapatite surfaces. , 2002, Carbohydrate research.

[54]  Seung-Heon Yoon,et al.  Enzymatic synthesis of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase. , 2004, Carbohydrate research.

[55]  R. A. Hancock,et al.  Structure of the levan elaborated by Streptococcus salivarius strain 51: an application of chemical-ionisation mass-spectrometry. , 1976, Carbohydrate research.

[56]  B. Guggenheim Enzymatic hydrolysis and structure of water-insoluble glucan produced by glucosyltransferases from a strain of streptococcus mutans. , 1970, Helvetica odontologica acta.

[57]  H. Leemhuis,et al.  The fully conserved Asp residue in conserved sequence region I of the α‐amylase family is crucial for the catalytic site architecture and activity , 2003, FEBS letters.

[58]  L. Hernández,et al.  Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. , 1995, The Biochemical journal.

[59]  R. Russell,et al.  Molecular genetics of glucan metabolism in oral streptococci. , 1990, Archives of oral biology.

[60]  S. Le Borgne,et al.  Characterization of a cell-associated inulosucrase from a novel source: A Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage of Mayan origin , 2002, Journal of Industrial Microbiology and Biotechnology.

[61]  G. Mooser,et al.  Sucrose 6-alpha-D-glucosyltransferase from Streptococcus sobrinus: characterization of a glucosyl-enzyme complex. , 1989, Biochemistry.

[62]  N. A. Jacques,et al.  Role of the C-terminal YG repeats of the primer-dependent streptococcal glucosyltransferase, GtfJ, in binding to dextran and mutan. , 2002, Microbiology.

[63]  J. Robyt,et al.  Nature of the fructan of Streptococcus mutans OMZ 176 , 1979, Infection and immunity.

[64]  K. Okamoto,et al.  Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. , 2002, Journal of biochemistry.

[65]  S. Hartmans,et al.  Transglycosylation by Streptococcus mutans GS-5 glucosyltransferase-D: acceptor specificity and engineering of reaction conditions. , 2000, Biotechnology and bioengineering.

[66]  J. Lakey,et al.  Secondary structure of Streptococcus downei GTF-1 glucansucrase. , 1999, FEMS microbiology letters.

[67]  K. Takada,et al.  Porphyromonas gingivicanis sp. nov. and Porphyromonas crevioricanis sp. nov., isolated from beagles. , 1994, International journal of systematic bacteriology.

[68]  L. Dijkhuizen,et al.  Crystallographic Studies of the Interaction of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 with Natural Substrates and Products (*) , 1995, The Journal of Biological Chemistry.

[69]  P. Monsan,et al.  Cloning and sequencing of a gene coding for an extracellular dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 synthesizing only a alpha (1-6) glucan. , 1998, FEMS microbiology letters.

[70]  H. Leemhuis,et al.  Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch hydrolase , 2002, FEBS letters.

[71]  Pedro M. Coutinho,et al.  Carbohydrate-active enzymes : an integrated database approach , 1999 .

[72]  L. Hernández,et al.  Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4. , 1996, Microbiology.

[73]  B. Svensson,et al.  Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization. , 2000, European journal of biochemistry.

[74]  W. Zimmermann,et al.  Cyclodextrin glucanotransferase: from gene to applications , 2005, Applied Microbiology and Biotechnology.

[75]  L. Dijkhuizen,et al.  Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes , 2005, FEBS letters.

[76]  R. Lamont,et al.  Dental plaque formation. , 2000, Microbes and infection.

[77]  K. Fukushima,et al.  Expression of Streptococcus mutans gtf genes in Streptococcus milleri , 1992, Infection and immunity.

[78]  M. Gajhede,et al.  Amylosucrase, a Glucan-synthesizing Enzyme from the α-Amylase Family* , 2001, The Journal of Biological Chemistry.

[79]  Y. W. Han Microbial levan. , 1990, Advances in applied microbiology.

[80]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[81]  M. Roberfroid,et al.  Inulin and Oligofructose as Dietary Fiber: A Review of the Evidence , 2001, Critical reviews in food science and nutrition.

[82]  S. Bozonnet,et al.  Homopolysaccharides from lactic acid bacteria , 2001 .

[83]  A. López-Munguía,et al.  Properties of levansucrase fromBacillus circulans , 2004, Applied Microbiology and Biotechnology.

[84]  M. Vignon,et al.  Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase. , 2001, Carbohydrate research.

[85]  B. Mollet,et al.  Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures. , 2003, Microbiology.

[86]  J. Paull Dextrans. , 1967, Developments in biological standardization.

[87]  I. Maddox,et al.  Exopolysaccharides from lactic acid bacteria: perspectives and challenges. , 2003, Trends in biotechnology.

[88]  L. Dijkhuizen,et al.  Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides , 1998, Applied Microbiology and Biotechnology.

[89]  P. Monsan,et al.  Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity , 1997, Applied Microbiology and Biotechnology.

[90]  R. Paxton,et al.  Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha-glucosyltransferases. , 1991, The Journal of biological chemistry.

[91]  V. Fischetti,et al.  Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram‐positive cocci , 1990, Molecular microbiology.

[92]  H. Kuramitsu,et al.  Isolation and characterization of a fructosyltransferase gene from Streptococcus mutans GS-5 , 1986, Infection and immunity.

[93]  H. Kuramitsu,et al.  Identification of essential amino acids in the Streptococcus mutans glucosyltransferases , 1997, Journal of bacteriology.

[94]  J. Preiss,et al.  Glutamate-459 is important for Escherichia coli branching enzyme activity. , 1998, Biochemistry.

[95]  L. Dijkhuizen,et al.  Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. , 2004, Microbiology.

[96]  R. Vogel,et al.  Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis , 2002, Journal of applied microbiology.

[97]  H. Leemhuis,et al.  Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1. , 2003, Biochemistry.

[98]  N. A. Jacques,et al.  Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975. , 1999, Biochemical Journal.

[99]  L. Dijkhuizen,et al.  Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase. , 2005, Biochemistry.

[100]  R. Chambert,et al.  Levansucrase of Bacillus subtilis , 1976 .

[101]  Magali Remaud-Simeon,et al.  Oligosaccharide and Sucrose Complexes of Amylosucrase , 2002, The Journal of Biological Chemistry.

[102]  A. Franck Technological functionality of inulin and oligofructose , 2002, British Journal of Nutrition.

[103]  H. Kuramitsu,et al.  Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. , 1992, Biochemical and biophysical research communications.

[104]  H. Kuramitsu,et al.  Sequence analysis of the Streptococcus mutans scrB gene , 1988, Infection and immunity.

[105]  N. A. Jacques Calcium dependence of the cell-associated fructosyltransferase of Streptococcus salivarius. , 1984, Carbohydrate research.

[106]  P. Monsan,et al.  Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only α(1–6) and α(1–3) linkages , 1996 .

[107]  L. Dijkhuizen,et al.  Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. , 2001, FEMS microbiology letters.

[108]  S. Oi,et al.  The molecular structure of low and high molecular weight levans synthesized by levansucrase. , 1980, Journal of biochemistry.

[109]  R. Wong,et al.  A mutant strain of Leuconostoc mesenteroides B-1355 producing a glucosyltransferase synthesizing α(1→2) glucosidic linkages , 1998, Journal of Industrial Microbiology and Biotechnology.

[110]  H. Kuramitsu,et al.  Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis , 1989, Infection and immunity.

[111]  N. A. Jacques,et al.  Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. , 1999, The Biochemical journal.

[112]  E. Newbrun,et al.  Physico-chemical characteristics of the levan produced by streptococcus salivarius , 1968 .

[113]  K. Ebert,et al.  Mechanisms of biopolymer growth: the formation of dextran and levan. , 1968, Advances in enzymology and related areas of molecular biology.

[114]  J. Carlsson A levansucrase from Streptococcus mutans. , 1970, Caries research.

[115]  M. Nadkarni,et al.  Quantitative Analysis of Diverse Lactobacillus Species Present in Advanced Dental Caries , 2004, Journal of Clinical Microbiology.

[116]  S. Aymerich,et al.  Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. , 2000, Environmental microbiology.

[117]  V. Monchois,et al.  Isolation of an Active Catalytic Core ofStreptococcus downei MFe28 GTF-I Glucosyltransferase , 1999, Journal of bacteriology.

[118]  B. A. van der Veen,et al.  Molecular Basis of the Amylose-like Polymer Formation Catalyzed by Neisseria polysaccharea Amylosucrase* , 2004, Journal of Biological Chemistry.

[119]  S. Hamada,et al.  Biology, immunology, and cariogenicity of Streptococcus mutans. , 1980, Microbiological reviews.

[120]  G. Ĉoté,et al.  Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1→6), (1→3)-α-d-glucan , 1982 .

[121]  S. Smeekens,et al.  Fructan: more than a reserve carbohydrate? , 1999, Plant physiology.

[122]  J. Ruiz-Herrera Biosynthesis of beta-glucans in fungi. , 1991, Antonie van Leeuwenhoek.

[123]  K. Mizuno,et al.  Gene Encoding a Dextransucrase-like Protein in Leuconostoc mesenteroides NRRL B-512F , 2000, Bioscience, biotechnology, and biochemistry.

[124]  M. Gajhede,et al.  Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. , 2004, Biochemistry.

[125]  R. Vogel,et al.  Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. , 2001, Journal of agricultural and food chemistry.

[126]  W. Boyko,et al.  The structural analysis of a levan produced by Streptococcus salivarius SS2. , 1990, Carbohydrate research.

[127]  R. Chambert,et al.  Kinetic studies of levansucrase of Bacillus subtilis. , 1974, European journal of biochemistry.

[128]  H. Creamer,et al.  Contribution of plaque polysaccharides to growth of cariogenic microorganisms. , 1971, Archives of oral biology.

[129]  H. Ohta,et al.  Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase) , 1991, Journal of bacteriology.

[130]  M. Vignon,et al.  Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. , 1997, Carbohydrate research.

[131]  L. Kotra,et al.  Transition State Stabilization , 2002 .

[132]  H. Kuramitsu,et al.  Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions , 1988, Journal of bacteriology.

[133]  R. Vogel,et al.  In Situ Production of Exopolysaccharides during Sourdough Fermentation by Cereal and Intestinal Isolates of Lactic Acid Bacteria , 2003, Applied and Environmental Microbiology.

[134]  C. Whitfield,et al.  Bacterial extracellular polysaccharides. , 1988, Canadian journal of microbiology.

[135]  J. Tagg,et al.  Dental caries is a preventable infectious disease. , 2000, Australian dental journal.

[136]  S. Radosta,et al.  Structure of the enzymatically synthesized fructan inulin. , 1998, Carbohydrate research.

[137]  T. Borchert,et al.  Isolation and characterization of levansucrase-encoding gene from Bacillus amyloliquefaciens. , 1990, Gene.

[138]  T. Ferenci,et al.  A novel levansucrase-levanase gene cluster in Bacillus stearothermophilus ATCC12980. , 1997, Biochimica et biophysica acta.

[139]  Birte Svensson,et al.  Recent Advances in Carbohydrate Bioengineering , 1999 .

[140]  H. Kuramitsu,et al.  Carboxyl-terminal deletion analysis of the Streptococcus mutans glucosyltransferase-I enzyme. , 1990, FEMS microbiology letters.

[141]  P. Giffard,et al.  The ftf gene encoding the cell-bound fructosyltransferase of Streptococcus salivarius ATCC 25975 is preceded by an insertion sequence and followed by FUR1 and clpP homologues. , 1993, Journal of general microbiology.

[142]  H. M. Tsuchiya,et al.  FACTORS AFFECTING MOLECULAR WEIGHT OF ENZYMATICALLY SYNTHESIZED DEXTRAN , 1953 .

[143]  G. J. Walker,et al.  Metabolism of the polysaccharides of human dental plaque. I. Dextranase activity of streptococci, and the extracellular polysaccharides synthesized from sucrose. , 1975, Caries research.

[144]  R. Chambert,et al.  Immobilisation of levansucrase on calcium phosphate gel strongly increases its polymerase activity. , 1993, Carbohydrate research.

[145]  J. Ferretti,et al.  Sequence analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt , 1990, Infection and immunity.

[146]  G R Gibson,et al.  A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides , 2001, Journal of applied microbiology.

[147]  L. Dijkhuizen,et al.  Site‐directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121 , 2004, FEBS letters.

[148]  L. Dijkhuizen,et al.  Molecular Characterization of a Novel Glucosyltransferase from Lactobacillus reuteri Strain 121 Synthesizing a Unique, Highly Branched Glucan with α-(1→4) and α-(1→6) Glucosidic Bonds , 2002, Applied and Environmental Microbiology.

[149]  M. Meldal,et al.  The extracellular polysaccharide of Pichia (Hansenula) holstii NRRL Y-2448: the phosphorylated side chains. , 1998, Carbohydrate research.

[150]  S. Oi,et al.  Synthesis of levan by levansucrase. Some factors affecting the rate of synthesis and degree of polymerization of levan. , 1979, Journal of biochemistry.

[151]  L. Dijkhuizen,et al.  Highly Hydrolytic Reuteransucrase from Probiotic Lactobacillus reuteri Strain ATCC 55730 , 2005, Applied and Environmental Microbiology.

[152]  S. Rhee,et al.  Nucleotide sequence of levansucrase gene (levU) of Zymomonas mobilis ZM1 (ATCC10988). , 1993, Biochimica et biophysica acta.

[153]  J. Ferretti,et al.  Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28 , 1987, Journal of bacteriology.

[154]  M. Gänzle,et al.  Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. , 2005, Journal of agricultural and food chemistry.

[155]  L De Vuyst,et al.  Heteropolysaccharides from lactic acid bacteria. , 1999, FEMS microbiology reviews.

[156]  N. Hanada,et al.  Nucleotide sequence analysis of the gtfT gene from Streptococcus sobrinus OMZ176 , 1993, Infection and Immunity.

[157]  T. Pons,et al.  Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity. , 1999, The Biochemical journal.

[158]  P. Monsan,et al.  Factors affecting alpha,-1,2 glucooligosaccharide synthesis by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. , 2001, Biotechnology and bioengineering.

[159]  P. Monsan,et al.  Glucansucrases: mechanism of action and structure-function relationships. , 1999, FEMS microbiology reviews.

[160]  N. A. Jacques,et al.  Role of C-terminal domains in surface attachment of the fructosyltransferase of Streptococcus salivarius ATCC 25975. , 1998, Journal of bacteriology.

[161]  F. L. Macrina,et al.  Inhibition of Streptococcus mutans glucosyltransferase activity by antiserum to a subsequence peptide , 1990, Infection and immunity.

[162]  L. Dijkhuizen,et al.  Efficient Screening Methods for Glucosyltransferase Genes in Lactobacillus Strains , 2003 .

[163]  P. Monsan,et al.  Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. , 2000, FEMS microbiology letters.

[164]  L. Selbmann,et al.  Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina , 2004, Antonie van Leeuwenhoek.

[165]  A. Gupta,et al.  Applications of inulin and oligofructose in health and nutrition , 2002, Journal of Biosciences.

[166]  L. Vuyst,et al.  Developing new polysaccharides. , 2003 .

[167]  W. Shi,et al.  Competition and Coexistence between Streptococcus mutans and Streptococcus sanguinis in the Dental Biofilm , 2005, Journal of bacteriology.

[168]  S. Hestrin,et al.  The enzymic production of levan. , 1943, The Biochemical journal.

[169]  K. Buchholz,et al.  Oligosaccharide synthesis by dextransucrase: new unconventional acceptors. , 2002, Carbohydrate research.

[170]  F. Paul,et al.  Oligosaccharide feed additives , 2007 .

[171]  R. Chambert,et al.  Readthrough of the Bacillus subtilis stop codon produces an extended enzyme displaying a higher polymerase activity. , 1992, Biochimica et biophysica acta.

[172]  B. Mckenna Texture in food. Volume 1: Semi-solid foods. , 2003 .

[173]  J. Sillanpää,et al.  Characterization of the Collagen-Binding S-Layer Protein CbsA of Lactobacillus crispatus , 2000, Journal of bacteriology.

[174]  M. Vignon,et al.  Mutagenesis of Asp-569 of Glucosyltransferase I Glucansucrase Modulates Glucan and Oligosaccharide Synthesis , 2000, Applied and Environmental Microbiology.

[175]  J. Chia,et al.  Functional Analyses of a Conserved Region in Glucosyltransferases of Streptococcus mutans , 1998, Infection and Immunity.

[176]  P. Giffard,et al.  Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. , 1991, Journal of general microbiology.

[177]  W. Van den Ende,et al.  Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved From Different Invertases. Expression of Fructan Genes Throughout Chicory Development , 2002, TheScientificWorldJournal.

[178]  H. Kuramitsu,et al.  Sequence analysis of the gtfB gene from Streptococcus mutans , 1987, Journal of bacteriology.

[179]  H. Kuramitsu,et al.  Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. , 1988, Gene.

[180]  B. Martin,et al.  Identification of Collagen-Binding Proteins inLactobacillus spp. with Surface-Enhanced Laser Desorption/Ionization–Time of Flight ProteinChip Technology , 2000, Applied and Environmental Microbiology.

[181]  B. Kimble,et al.  The mechanism of dextransucrase action. Direction of dextran biosynthesis. , 1974, Archives of biochemistry and biophysics.

[182]  S. Bozonnet,et al.  Role of the Two Catalytic Domains of DSR-E Dextransucrase and Their Involvement in the Formation of Highly α-1,2 Branched Dextran , 2005, Journal of bacteriology.

[183]  H. Kuramitsu,et al.  Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis , 1992, Journal of bacteriology.

[184]  M. Nadkarni,et al.  Molecular Analysis of Microbial Diversity in Advanced Caries , 2005, Journal of Clinical Microbiology.

[185]  Kazuo Ito,et al.  Characterization of a thermostable levansucrase from Bacillus sp. TH4-2 capable of producing high molecular weight levan at high temperature. , 2002, Journal of biotechnology.

[186]  F. Bovey Enzymatic polymerization. I. Molecular weight and branching during the formation of dextran , 1959 .

[187]  M. Gajhede,et al.  Crystallization and preliminary X-ray studies of recombinant amylosucrase from Neisseria polysaccharea. , 2000, Acta crystallographica. Section D, Biological crystallography.

[188]  B. Mannervik,et al.  An inulin-like fructan produced by Streptococcus mutans, strain JC2. , 1974, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry.

[189]  Š. Janeček,et al.  Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. , 2000, FEMS microbiology letters.

[190]  M. Shiraiwa,et al.  An active-site peptide containing the second essential carboxyl group of dextransucrase from Leuconostoc mesenteroides by chemical modifications. , 1993, Biochemistry.

[191]  D. Clewell,et al.  Changes in the carboxyl-terminal repeat region affect extracellular activity and glucan products of Streptococcus gordonii glucosyltransferase , 1996, Infection and immunity.

[192]  D. Clewell,et al.  Nucleotide sequence analysis of the Streptococcus gordonii glucosyltransferase gene, gtfG. , 1997, DNA sequence : the journal of DNA sequencing and mapping.

[193]  E. Chen,et al.  Methylation structural analysis of unusual dextrans by combined gas-liquid chromatography-mass spectrometry , 1979 .

[194]  R. Vogel,et al.  Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392 , 2005, Applied Microbiology and Biotechnology.

[195]  S. Aymerich,et al.  The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites , 2004, Molecular and General Genetics MGG.

[196]  S. Withers,et al.  X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family , 1999, Nature Structural Biology.

[197]  C. Dunlap,et al.  Alternansucrase acceptor reactions with methyl hexopyranosides. , 2003, Carbohydrate research.

[198]  Young-Min Kim,et al.  Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. , 2003, Carbohydrate research.

[199]  L. Dijkhuizen,et al.  Engineering of cyclodextrin glycosyltransferase reaction and product specificity. , 2000, Biochimica et biophysica acta.

[200]  S. Busby,et al.  Serine substitution for cysteine residues in levansucrase selectively abolishes levan forming activity , 2003, Biotechnology Letters.

[201]  S. Ebisu,et al.  Structural differences in fructans elaborated by streptococcus mutans and Strep. salivarius. , 1975, Journal of biochemistry.

[202]  A. Koops,et al.  Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus ‘Colombia’ I. Fructan: fructan fructosyl transferase , 1994 .

[203]  L. Dijkhuizen,et al.  Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. , 2004, Microbiology.

[204]  Q. Gao,et al.  Knowledge‐based model of a glucosyltransferase from the oral bacterial group of mutans streptococci , 1997, Protein science : a publication of the Protein Society.

[205]  V. Planchot,et al.  Amylosucrase from Neisseria polysaccharea: novel catalytic properties , 2000, FEBS letters.

[206]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[207]  B. Svensson,et al.  Identification of key amino acid residues in Neisseria polysaccharea amylosucrase , 2000, FEBS letters.

[208]  R. Russell,et al.  Insertional inactivation of the Streptococcus mutans dexA (dextranase) gene results in altered adherence and dextran catabolism. , 1995, Microbiology.

[209]  H. Leemhuis,et al.  Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase. , 2004, Biochemistry.

[210]  J. Robyt,et al.  Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases. , 1991, Carbohydrate research.

[211]  H. Kuramitsu,et al.  Role of C-terminal direct repeating units of the Streptococcus mutans glucosyltransferase-S in glucan binding , 1995, Applied and environmental microbiology.

[212]  H. Kuramitsu,et al.  Carboxyl-terminal deletion analysis of theStreptococcus mutansglucosyltransferase-I enzyme , 1990 .

[213]  R. Russell,et al.  The application of molecular genetics to the microbiology of dental caries. , 1994, Caries research.

[214]  S. Bozonnet,et al.  Molecular Characterization of DSR-E, an α-1,2 Linkage-Synthesizing Dextransucrase with Two Catalytic Domains , 2002, Journal of bacteriology.

[215]  D. Steinberg,et al.  The role of fructans on dental biofilm formation by Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus. , 2001, FEMS microbiology letters.

[216]  Shiying Xu,et al.  Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. , 2000, Journal of biotechnology.

[217]  S. Aymerich,et al.  Cloning, sequencing, and disruption of a levanase gene of Bacillus polymyxa CF43 , 1994, Journal of bacteriology.

[218]  Š. Janeček,et al.  Relationship of sequence and structure to specificity in the α-amylase family of enzymes , 2001 .

[219]  H. Kuramitsu,et al.  Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product , 1994, Journal of bacteriology.

[220]  J. Aduse-Opoku,et al.  Genetic and antigenic comparison of Streptococcus mutans fructosyltransferase and glucan-binding protein. , 1989, FEMS microbiology letters.

[221]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[222]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1999, The Journal of Biological Chemistry.

[223]  L. Dijkhuizen,et al.  Characterization of a Novel Fructosyltransferase from Lactobacillus reuteri That Synthesizes High-Molecular-Weight Inulin and Inulin Oligosaccharides , 2002, Applied and Environmental Microbiology.

[224]  P. Giffard,et al.  Four glucosyltransferases, GtfJ, GtfK, GtfL and GtfM, from Streptococcus salivarius ATCC 25975. , 1995, Microbiology.