Comment: Feature Screening and Variable Selection via Iterative Ridge Regression

Since the seminal work of Hoerl and Kennard (1970), the ridge regression has been formulated as $\ell_2$regularization and extended to solve various challenging problems in statistics. This paper d...

[1]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[2]  Jianqing Fan,et al.  Nonconcave Penalized Likelihood With NP-Dimensionality , 2009, IEEE Transactions on Information Theory.

[3]  Jianqing Fan,et al.  High Dimensional Classification Using Features Annealed Independence Rules. , 2007, Annals of statistics.

[4]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[5]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[6]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[7]  Yuling Yan,et al.  Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization , 2019, SIAM J. Optim..

[8]  Yuling Yan,et al.  Inference and uncertainty quantification for noisy matrix completion , 2019, Proceedings of the National Academy of Sciences.

[9]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[12]  K. Lange A gradient algorithm locally equivalent to the EM algorithm , 1995 .

[13]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[14]  Po-Ling Loh,et al.  Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..

[15]  Peter D. Hoff,et al.  Lasso, fractional norm and structured sparse estimation using a Hadamard product parametrization , 2016, Comput. Stat. Data Anal..

[16]  Runze Li,et al.  Statistical Foundations of Data Science , 2020 .

[17]  Jianqing Fan,et al.  Regularization of Wavelet Approximations , 2001 .

[18]  Po-Ling Loh,et al.  Statistical consistency and asymptotic normality for high-dimensional robust M-estimators , 2015, ArXiv.

[19]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[20]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[21]  Weijie J. Su,et al.  SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION. , 2014, The annals of applied statistics.

[22]  D. Hunter,et al.  Variable Selection using MM Algorithms. , 2005, Annals of statistics.

[23]  A. Tikhonov On the stability of inverse problems , 1943 .

[24]  Po-Ling Loh,et al.  Support recovery without incoherence: A case for nonconvex regularization , 2014, ArXiv.

[25]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[26]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.