The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex

[1]  Aristides B. Arrenberg,et al.  Spatial gradients and multidimensional dynamics in a neural integrator circuit , 2011, Nature Neuroscience.

[2]  J. Fetcho,et al.  Movement, technology and discovery in the zebrafish , 2011, Current Opinion in Neurobiology.

[3]  A. Farrell,et al.  Encyclopedia of fish physiology : from genome to environment , 2011 .

[4]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[5]  T. Nicolson,et al.  Quantification of vestibular-induced eye movements in zebrafish larvae , 2010, BMC Neuroscience.

[6]  R. Baker,et al.  Ancestry of motor innervation to pectoral fin and forelimb , 2010, Nature communications.

[7]  Aristides B. Arrenberg,et al.  Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish , 2010, The Journal of Neuroscience.

[8]  K. Peusner,et al.  Identification of vestibuloocular projection neurons in the developing chicken medial vestibular nucleus , 2010, Journal of neuroscience research.

[9]  J. Clarke,et al.  Focal electroporation in zebrafish embryos and larvae. , 2009, Methods in molecular biology.

[10]  R. Baker,et al.  Semicircular Canal Size Determines the Developmental Onset of Angular Vestibuloocular Reflexes in Larval Xenopus , 2008, The Journal of Neuroscience.

[11]  J. Dickman,et al.  Canal and otolith contributions to compensatory tilt responses in pigeons. , 2008, Journal of neurophysiology.

[12]  D. Angelaki,et al.  Vestibular system: the many facets of a multimodal sense. , 2008, Annual review of neuroscience.

[13]  Kristen E. Severi,et al.  Control of visually guided behavior by distinct populations of spinal projection neurons , 2008, Nature Neuroscience.

[14]  Stephan C F Neuhauss,et al.  The optokinetic response in zebrafish and its applications. , 2008, Frontiers in bioscience : a journal and virtual library.

[15]  H. Burgess,et al.  Modulation of locomotor activity in larval zebrafish during light adaptation , 2007, Journal of Experimental Biology.

[16]  S. Highstein,et al.  The anatomy of the vestibular nuclei. , 2006, Progress in brain research.

[17]  Chris I De Zeeuw,et al.  Otolith deprivation induces optokinetic compensation. , 2005, Journal of neurophysiology.

[18]  S. Tomchik,et al.  Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons) , 2005, The Journal of comparative neurology.

[19]  D. Tank,et al.  Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. , 2004, Journal of neurophysiology.

[20]  Dora E. Angelaki,et al.  Neurons compute internal models of the physical laws of motion , 2004, Nature.

[21]  Dora E Angelaki,et al.  Eyes on target: what neurons must do for the vestibuloocular reflex during linear motion. , 2004, Journal of neurophysiology.

[22]  David W Tank,et al.  Instrumentation for measuring oculomotor performance and plasticity in larval organisms. , 2004, Methods in cell biology.

[23]  Mark A Masino,et al.  Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. , 2003, Journal of neurophysiology.

[24]  H. Straka,et al.  Differential spatial organization of otolith signals in frog vestibular nuclei. , 2003, Journal of neurophysiology.

[25]  J. Baker,et al.  The vestibulo ocular reflex (VOR) in otoconia deficient head tilt (het) mutant mice versus wild type C57BL/6 mice , 2003, Brain Research.

[26]  J. Simpson,et al.  Orienting otolith-ocular reflexes in the rabbit during static and dynamic tilts and off-vertical axis rotation , 2001, Vision Research.

[27]  R. Baker,et al.  Rhombomeric organization of vestibular pathways in larval frogs , 2001, The Journal of comparative neurology.

[28]  N. Isu,et al.  Commissural effects in the otolith system , 2001, Experimental Brain Research.

[29]  D. O'Malley,et al.  Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. , 2000, The Journal of experimental biology.

[30]  B. Riley,et al.  Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. , 2000, Journal of neurobiology.

[31]  H Okamoto,et al.  Visualization of Cranial Motor Neurons in Live Transgenic Zebrafish Expressing Green Fluorescent Protein Under the Control of the Islet-1 Promoter/Enhancer , 2000, The Journal of Neuroscience.

[32]  Stephen L. Johnson,et al.  nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. , 1999, Development.

[33]  R. Baker,et al.  Otolith Ocular Reflex Function of the Tangential Nucleus in Teleost Fish , 1999, Annals of the New York Academy of Sciences.

[34]  C. Burress,et al.  Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. , 1999, Journal of neurobiology.

[35]  B J Hess,et al.  Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information , 1999, The Journal of Neuroscience.

[36]  B. Hess,et al.  Oculomotor control of primary eye position discriminates between translation and tilt. , 1999, Journal of neurophysiology.

[37]  D. Goldman,et al.  Induction of α1-tubulin gene expression during development and regeneration of the fish central nervous system , 1998 .

[38]  D. Goldman,et al.  Induction of alpha1-tubulin gene expression during development and regeneration of the fish central nervous system. , 1998, Journal of Neurobiology.

[39]  S. Easter,et al.  The development of eye movements in the zebrafish (Danio rerio). , 1997, Developmental psychobiology.

[40]  B. Hess,et al.  Organizational Principles of Otolith‐ and Semicircular Canal‐Ocular Reflexes in Rhesus Monkeys a , 1996, Annals of the New York Academy of Sciences.

[41]  J. Lewis,et al.  Early ear development in the embryo of the Zebrafish, Danio rerio , 1996, The Journal of comparative neurology.

[42]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[43]  R. Baker,et al.  Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation. , 1992, Journal of neurophysiology.

[44]  U Büttner,et al.  Neuroanatomy of the ocular motor pathways. , 1992, Bailliere's clinical neurology.

[45]  R. Baker,et al.  Anatomical organization of the brainstem octavolateralis area of the oyster toadfish, Opsanus tau , 1992, The Journal of comparative neurology.

[46]  N. Dieringer,et al.  Spatial Organization of the Maculo‐Ocular Reflex of the Rat: Responses During Off‐Vertical Axis Rotation , 1990, The European journal of neuroscience.

[47]  J. Allum,et al.  Vestibulospinal control of posture and locomotion. , 1988, Progress in brain research.

[48]  W. Graf,et al.  Peripheral and central oculomotor organization in the goldfish, Carassius auratus , 1985, The Journal of comparative neurology.

[49]  F. A. Miles,et al.  Plasticity in the vestibulo-ocular reflex: a new hypothesis. , 1981, Annual review of neuroscience.

[50]  K. Peusner,et al.  The neuronal architecture and topography of the nucleus vestibularis tangentialis in the late chick embryo , 1977, Neuroscience.

[51]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[52]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. , 1976, Journal of neurophysiology.

[53]  C. Fernández,et al.  The vestibular system. , 1962, Archives of otolaryngology.

[54]  J. Szentágothai The elementary vestibulo-ocular reflex arc. , 1950, Journal of neurophysiology.