Chemical tuning of CO2 sorption in robust nanoporous organic polymers

We report here the carbon dioxide sorption properties for a series of conjugated microporous polymer (CMP) networks. These CMP materials incorporate a range of chemical functionalities including carboxylic acids, amines, hydroxyl groups, and methyl groups. The carboxylic acid functionalised network, rather than its amine analogue, shows the highest isosteric heat of sorption for CO2. This supports recent computational predictions for metal–organic frameworks and suggests that acid-functionalised frameworks could outperform more widely studied amine sorbents in CO2 capture and separation application.

[1]  A. Cooper,et al.  Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation , 2009 .

[2]  F. Švec,et al.  Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage , 2007 .

[3]  Neil L. Campbell,et al.  High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. , 2009, Chemical communications.

[4]  F. Švec,et al.  Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption. , 2009, Chemical communications.

[5]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[6]  A. Cooper,et al.  Ultrahigh Surface Area in Porous Solids , 2010, Advanced materials.

[7]  A. Cooper,et al.  High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice , 2010 .

[8]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[9]  J. J. Pis,et al.  Surface modification of activated carbons for CO2 capture , 2008 .

[10]  Katsunori Yogo,et al.  Adsorption characteristics of carbon dioxide on organically functionalized SBA-15 , 2005 .

[11]  Arne Thomas,et al.  Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  A. Torrisi,et al.  Functionalized MOFs for Enhanced CO2 Capture , 2010 .

[13]  P. Budd,et al.  Highly permeable polymers for gas separation membranes , 2010 .

[14]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[15]  Francis Meunier,et al.  Experimental Investigation on CO2 Post−Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites , 2008 .

[16]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[17]  Ki Bong Lee,et al.  Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications , 2008 .

[18]  R. Weiss,et al.  Development of Supported Ethanolamines and Modified Ethanolamines for CO2 Capture , 2005 .

[19]  Rajamani Krishna,et al.  Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation , 2010 .

[20]  Andrew I. Cooper,et al.  Conjugated Microporous Polymers , 2009 .

[21]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[22]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[23]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[24]  D. Lozano‐Castelló,et al.  Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons , 2004 .

[25]  Covadonga Pevida,et al.  CO2 capture by adsorption with nitrogen enriched carbons , 2007 .

[26]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[27]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[28]  R. Clowes,et al.  Functionalized Conjugated Microporous Polymers , 2009 .

[29]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[30]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[31]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[32]  K. Harris,et al.  A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. , 2007, Chemical communications.

[33]  Lorenz T. Biegler,et al.  Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration , 2003 .

[34]  A. Cooper,et al.  Microporous Organic Polymers for Methane Storage , 2008 .

[35]  F. Švec,et al.  Nanoporous polymers for hydrogen storage. , 2009, Small.

[36]  Myunghyun Paik Suh,et al.  Highly selective CO(2) capture in flexible 3D coordination polymer networks. , 2009, Angewandte Chemie.

[37]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[38]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[39]  R. Clowes,et al.  High Surface Area Contorted Conjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene , 2010 .

[40]  Hong‐Cai Zhou,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[41]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[42]  P. Budd,et al.  The potential of organic polymer-based hydrogen storage materials. , 2007, Physical chemistry chemical physics : PCCP.

[43]  Neil L. Campbell,et al.  Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .

[44]  N. Shigemoto,et al.  Material balance and energy consumption for CO2 recovery from moist flue gas employing K2CO3-on-activated carbon and its evaluation for practical adaptation , 2006 .

[45]  Steven Chu,et al.  Carbon Capture and Sequestration , 2016 .

[46]  Robert W. Stevens,et al.  CO2 capture by amine-enriched fly ash carbon sorbents , 2004 .

[47]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[48]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[49]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[50]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[51]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[52]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[53]  Christopher W. Jones,et al.  Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. , 2008, Journal of the American Chemical Society.

[54]  M. Antonietti,et al.  Microporous Conjugated Poly(thienylene arylene) Networks , 2009 .

[55]  V. Zeleňák,et al.  Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties , 2008 .

[56]  G. P. Knowles,et al.  Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents , 2005 .

[57]  Covadonga Pevida,et al.  Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture , 2008 .

[58]  J. Andresen,et al.  Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 , 2003 .

[59]  Grace Ordaz,et al.  The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements , 2007 .