Understanding the Structural Evolution and Redox Mechanism of a NaFeO2–NaCoO2 Solid Solution for Sodium‐Ion Batteries

Na‐ion batteries have become promising candidates for large‐scale energy‐storage systems because of the abundant Na resources and they have attracted considerable academic interest because of their unique behavior, such as their electrochemical activity for the Fe3+/Fe4+ redox couple. The high‐rate performance derived from the low Lewis‐acidity of the Na+ ions is another advantage of Na‐ion batteries and has been demonstrated in NaFe1/2Co1/2O2 solutions. Here, a solid solution of NaFeO2‐NaCoO2 is synthesized and the mechanisms behind their excellent electrochemical performance are studied in comparison to those of their respective end‐members. The combined analysis of operando X‐ray diffraction, ex situ X‐ray absorption spectroscopy, and density functional theory (DFT) calculations for Na1– x Fe1/2Co1/2O2 reveals that the O3‐type phase transforms into a P3‐type phase coupled with Na+/vacancy ordering, which has not been observed in O3‐type NaFeO2. The substitution of Co for Fe stabilizes the P3‐type phase formed by sodium extraction and could suppress the irreversible structural change that is usually observed in O3‐type NaFeO2, resulting in a better cycle retention and higher rate performance. Although no ordering of the transition metal ions is seen in the neutron diffraction experiments, as supported by Monte‐Carlo simulations, the formation of a superlattice originating from the Na+/vacancy ordering is found by synchrotron X‐ray diffraction for Na0.5Fe1/2Co1/2O2, which may involve a potential step in the charge/discharge profiles.

[1]  Chenglong Zhao,et al.  Sodium‐Deficient O3‐Na0.9[Ni0.4Mn xTi0.6−x]O2 Layered‐Oxide Cathode Materials for Sodium‐Ion Batteries , 2016 .

[2]  Ji-Li Yue,et al.  O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries , 2015 .

[3]  Yong-Sheng Hu,et al.  Prototype Sodium‐Ion Batteries Using an Air‐Stable and Co/Ni‐Free O3‐Layered Metal Oxide Cathode , 2015, Advanced materials.

[4]  D. Nihtianova,et al.  P3-Type Layered Sodium-Deficient Nickel-Manganese Oxides: A Flexible Structural Matrix for Reversible Sodium and Lithium Intercalation. , 2015, ChemPlusChem.

[5]  Christopher S. Johnson,et al.  New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe3+/Fe4+ Redox in α-NaFeO2 , 2015 .

[6]  B. Hwang,et al.  O3–NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na+ (de)intercalation , 2015 .

[7]  K. Kubota,et al.  New Insight into Structural Evolution in Layered NaCrO2 during Electrochemical Sodium Extraction , 2015 .

[8]  Xiao‐Qing Yang,et al.  O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries , 2014 .

[9]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[10]  Chun-hua Chen,et al.  Na[Ni0.4Fe0.2Mn0.4−xTix]O2: a cathode of high capacity and superior cyclability for Na-ion batteries , 2014 .

[11]  K. Kubota,et al.  A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity , 2014 .

[12]  Gerbrand Ceder,et al.  Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides , 2014 .

[13]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[14]  Jiwen Feng,et al.  A Honeycomb‐Layered Na3Ni2SbO6: A High‐Rate and Cycle‐Stable Cathode for Sodium‐Ion Batteries , 2014, Advanced materials.

[15]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[16]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[17]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[18]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[19]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[20]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[21]  H. Iba,et al.  Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries , 2013 .

[22]  Xiqian Yu,et al.  Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy , 2013 .

[23]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[24]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[25]  Pierre Kubiak,et al.  High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x , 2012 .

[26]  S. Ong,et al.  A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. , 2012, Physical chemistry chemical physics : PCCP.

[27]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[28]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[29]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[30]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[31]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[32]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[33]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[34]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[35]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[36]  Shinichi Komaba,et al.  Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .

[37]  M. Hayashi,et al.  IBARAKI materials design diffractometer (iMATERIA)—Versatile neutron diffractometer at J-PARC , 2009 .

[38]  M. Yonemura,et al.  Rietveld analysis software for J-PARC , 2009 .

[39]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[40]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[41]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[42]  R. Cava,et al.  Low temperature phase transitions and crystal structure of Na0.5CoO2 , 2004, cond-mat/0402255.

[43]  Min Gyu Kim,et al.  Oxygen Contribution on Li-Ion Intercalation-Deintercalation in LiAl y Co1 − y O 2 Investigated by O K-Edge and Co L-Edge X-Ray Absorption Spectroscopy , 2002 .

[44]  M. Sakata,et al.  The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies , 2001 .

[45]  M. Holzapfel,et al.  Lithium-Ion Conductors of the System LiCo1−xFexO2, Preparation and Structural Investigation , 2001 .

[46]  J. Dahn,et al.  Superlattice Ordering of Mn, Ni, and Co in Layered Alkali Transition Metal Oxides with P2, P3, and O3 Structures , 2000 .

[47]  J. Dahn,et al.  Layered T2-, O6-, O2-, and P2-Type A2/3[M‘2+1/3M4+2/3]O2 Bronzes, A = Li, Na; M‘ = Ni, Mg; M = Mn, Ti , 2000 .

[48]  J. Tarascon,et al.  In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry , 1999 .

[49]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[52]  Bruno Scrosati,et al.  Challenge of portable power , 1995, Nature.

[53]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[54]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[55]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[56]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[57]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[58]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[59]  P. Hagenmuller,et al.  Comportement electrochimique des phases NaxCoO2 , 1980 .

[60]  M. Inagaki,et al.  A preparation and polymorphic relations of sodium iron oxide (NaFeO2) , 1980 .

[61]  P. Hagenmuller,et al.  Influence de l'environnement de l'ion alcalin sur sa mobilite dans les structures a feuillets Ax(LxM1−x)O2 , 1979 .

[62]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[63]  L. Träger,et al.  Biotransformation von 1,2-3H-Testosteron durch Hela-Zellen , 1972, Naturwissenschaften.

[64]  R. Bozorth THE CRYSTAL STRUCTURE OF CADMIUM IODIDE , 1922 .

[65]  Lei Liu,et al.  NaTiO2: a layered anode material for sodium-ion batteries , 2015 .

[66]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[67]  T. Rojo,et al.  Electrochemical performance of NaFex(Ni0.5Ti0.5)1−xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery , 2015 .

[68]  Gerbrand Ceder,et al.  Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries , 2014 .

[69]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[70]  Nikolay Dimov,et al.  Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries , 2013 .

[71]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[72]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[73]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[74]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[75]  G. Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[76]  V. F. Sears Neutron scattering lengths and cross sections , 1992 .

[77]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .