Phase-space invariants for aggregates of particles: hyperangular momenta and partitions of the classical kinetic energy.

Rigorous definitions are presented for the kinematic angular momentum K of a system of classical particles (a concept dual to the conventional angular momentum J), the angular momentum L(xi) associated with the moments of inertia, and the contributions to the total kinetic energy of the system from various modes of the motion of the particles. Some key properties of these quantities are described-in particular, their invariance under any orthogonal coordinate transformation and the inequalities they are subject to. The main mathematical tool exploited is the singular value decomposition of rectangular matrices and its differentiation with respect to a parameter. The quantities introduced employ as ingredients particle coordinates and momenta, commonly available in classical trajectory studies of chemical reactions and in molecular dynamics simulations, and thus are of prospective use as sensitive and immediately calculated indicators of phase transitions, isomerizations, onsets of chaotic behavior, and other dynamical critical phenomena in classical microaggregates, such as nanoscale clusters.

[1]  Raymond A. DeCarlo,et al.  Computing Most Nearly Rank-Reducing Structured Matrix Perturbations , 1995, SIAM J. Matrix Anal. Appl..

[2]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[3]  B. Smirnov Melting of clusters with pair interaction of atoms , 1994 .

[4]  Dmitrij Borisovich Fuks,et al.  Beginner’s Course in Topology , 1984 .

[5]  M. Karplus,et al.  The distance fluctuation criterion for melting: Comparison of square-well and Morse potential models for clusters and homopolymers , 2002 .

[6]  A. Kuppermann,et al.  Hyperspherical harmonics for tetraatomic systems , 2001 .

[7]  J. Light Statistical theory of bimolecular exchange reactions , 1967 .

[8]  W. Zickendraht Collective and Single-Particle Coordinates in Nuclear Physics , 1971 .

[9]  F. T. Smith,et al.  Symmetric Representation for Three‐Body Problems. II. Motion in Space , 1968 .

[10]  V. Aquilanti,et al.  Kinematic rotations for four-centre reactions: mapping tetra-atomic potential energy surfaces on the kinetic sphere , 1996 .

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  V. Aquilanti,et al.  The quantum-mechanical Hamiltonian for tetraatomic systems in symmetric hyperspherical coordinates , 1997 .

[13]  K. Museth,et al.  Asymptotic analysis of state-to-state tetraatomic reactions using row-orthonormal hyperspherical coordinates , 2001 .

[14]  V. Aquilanti,et al.  The A+BC reaction by the hyperquantization algorithm: the symmetric hyperspherical parametrization for J > 0 , 2001 .

[15]  V. Aquilanti,et al.  Theory of electronically nonadiabatic reactions: Rotational, Coriolis, spin–orbit couplings and the hyperquantization algorithm , 2001 .

[16]  A. Bunse-Gerstner,et al.  Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .

[17]  J. Light,et al.  On Detailed Balancing and Statistical Theories of Chemical Kinetics , 1965 .

[18]  K. Mitchell,et al.  INTERNAL SPACES, KINEMATIC ROTATIONS, AND BODY FRAMES FOR FOUR-ATOM SYSTEMS , 1998 .

[19]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[20]  Kinematic orbits and the structure of the internal space for systems of five or more bodies , 1999, physics/9910001.

[21]  Vincenzo Aquilanti,et al.  Global view of classical clusters: the hyperspherical approach to structure and dynamicsPresented at the Second International Meeting on Photodynamics, Havana, Cuba, February 10???16 2002. , 2002 .

[22]  Vincenzo Aquilanti,et al.  Hyperspherical harmonics for polyatomic systems: basis set for collective motions , 2004 .

[23]  V. Aquilanti,et al.  Hyperquantization algorithm. II. Implementation for the F+H2 reaction dynamics including open-shell and spin-orbit interactions , 1998 .

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  Vincenzo Aquilanti,et al.  Collective hyperspherical coordinates for polyatomic molecules and clusters , 2000 .

[26]  D. Wales,et al.  Chaos in small clusters of inert gas atoms , 1992 .

[27]  R. Berry,et al.  Chaotic dynamics in small inert gas clusters: The influence of potential energy saddles , 1993 .

[28]  V. Aquilanti,et al.  Three-body problem in quantum mechanics: hyperspherical elliptic coordinates and harmonic basis sets. , 2004, The Journal of chemical physics.

[29]  F. Smith Participation of Vibration in Exchange Reactions , 1959 .

[30]  D. Herschbach,et al.  New methods in quantum theory , 1996 .

[31]  Dmitrij Borisovich Fuks,et al.  Beginner’s Course in Topology: Geometric Chapters , 1984 .

[32]  W. Zickendraht,et al.  Configuration‐Space Approach to the Four‐Particle Problem , 1969 .

[33]  William P. Reinhardt,et al.  Regular and Irregular Correspondences , 2013 .

[34]  V. Aquilanti,et al.  Hyperspherical coordinates for molecular dynamics by the method of trees and the mapping of potential energy surfaces for triatomic systems , 1986 .

[35]  V. Aquilanti,et al.  Hyperquantization algorithm. I. Theory for triatomic systems , 1998 .

[36]  G. Stewart A second order perturbation expansion for small singular values , 1984 .

[37]  V. Aquilanti,et al.  Hyperspherical Coordinates for Chemical Reaction Dynamics , 2000 .

[38]  V. Aquilanti,et al.  Representation in hyperspherical and related coordinates of the potential-energy surface for triatomic reactions , 1990 .

[39]  K. Wright Differential equations for the analytic singular value decomposition of a matrix , 1992 .

[40]  Timo Eirola,et al.  On Smooth Decompositions of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[41]  V. Aquilanti,et al.  Exact reaction dynamics by the hyperquantization algorithm: integral and differential cross sections for F+H2, including long-range and spin–orbit effects , 2002 .

[42]  J. Linderberg,et al.  Hyperspherical coordinates in four particle systems , 1983 .

[43]  Paul G. Mezey,et al.  Shape in Chemistry: An Introduction to Molecular Shape and Topology , 1993 .

[44]  P. Coveney,et al.  Quantifying chaos and transient chaos in nonlinear chemically reacting systems , 1992 .

[45]  W. Zickendraht Construction of a complete orthogonal system for the quantum-mechanical three-body problem , 1965 .

[46]  Vincenzo Aquilanti,et al.  Hyperspherical harmonics for polyatomic systems: Basis set for kinematic rotations , 2002 .

[47]  Uwe Helmke,et al.  Singular value decomposition of time-varying matrices , 2003, Future Gener. Comput. Syst..

[48]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[49]  Ioan Mackenzie James,et al.  The topology of Stiefel manifolds , 1976 .

[50]  W. Zickendraht Configuration-Space Approach to Three-Particle Scattering , 1967 .

[51]  F. Smith,et al.  A Symmetric Representation for Three‐Body Problems. I. Motion in a Plane , 1962 .

[52]  R. Littlejohn,et al.  Gauge fields in the separation of rotations and internal motions in the n-body problem , 1997 .

[53]  F. Smith Generalized Angular Momentum in Many-Body Collisions , 1960 .

[54]  Luca Dieci,et al.  Smoothness and Periodicity of Some Matrix Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[55]  E. Kryachko,et al.  Conceptual trends in quantum chemistry , 1994 .

[56]  Vincenzo Aquilanti,et al.  Coordinates for molecular dynamics: Orthogonal local systems , 1986 .

[57]  K. Mitchell,et al.  Body frames and frame singularities for three-atom systems , 1998 .

[58]  V. Aquilanti,et al.  Adiabatic and post‐adiabatic representations for multichannel Schrödinger equations , 1994 .

[59]  Continuous bordering of matrices and continuous matrix decompositions , 1995 .

[60]  Vincenzo Aquilanti,et al.  Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics: Hyperquantization algorithm , 2003 .