Feasible quantum error detection with linear optics

We present linear optical schemes, based on the quantum parity check, that perform error detection on two-photon entangled states and arbitrary single-photon states. Also, a limited form of error correction is possible. These schemes operate without CNOT gates, ancillary qubits, GHZ states, or multiple two-photon states.

[1]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[2]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[3]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[4]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[5]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  J. Franson,et al.  Demonstration of nondeterministic quantum logic operations using linear optical elements. , 2001, Physical review letters.

[7]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[8]  F. Sciarrino,et al.  Experimental realization of the quantum universal NOT gate , 2002, Nature.

[9]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[10]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[12]  D. Bouwmeester,et al.  Bit-flip-error rejection in optical quantum communication , 2001 .

[13]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[14]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[15]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[16]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.