Feasible quantum error detection with linear optics
暂无分享,去创建一个
[1] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[2] Andrew G. White,et al. Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.
[3] M. Kafatos. Bell's theorem, quantum theory and conceptions of the universe , 1989 .
[4] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[5] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[6] J. Franson,et al. Demonstration of nondeterministic quantum logic operations using linear optical elements. , 2001, Physical review letters.
[7] D. Bouwmeester,et al. The Physics of Quantum Information , 2000 .
[8] F. Sciarrino,et al. Experimental realization of the quantum universal NOT gate , 2002, Nature.
[9] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[10] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[11] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[12] D. Bouwmeester,et al. Bit-flip-error rejection in optical quantum communication , 2001 .
[13] Shih,et al. New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.
[14] H. Weinfurter,et al. Experimental quantum teleportation , 1997, Nature.
[15] J. D. Franson,et al. Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.
[16] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.