Robust subspace neuro-fuzzy system with data ordering

The paper presents a subspace neuro-fuzzy system with ordering of data items.The system assigns fuzzy weights to attributes in each fuzzy rule.The ordering technique makes the system robust to outliers.The presented system can outperform a subspace neuro-fuzzy system for noisy data. Neuro-fuzzy systems are known for their ability to both approximate and generalize presented data. In real life data sets not always all attributes (dimensions) of data are relevant or have the same importance. Some of them may be noninformative or unnecessary. This is why subspace technique is applied. Unfortunately this technique is vulnerable to noise and outliers that are often present in real life data. The paper describes a subspace neuro-fuzzy system with data ordering technique. Data items are ordered and assigned with typicalities. Data items with low typicalities have lower influence on the elaborated fuzzy model. This technique makes fuzzy models more robust to noise and outliers. The paper is accompanied by numerical experiments on real life data sets.

[1]  Krzysztof Siminski,et al.  Neuro-Fuzzy System with Hierarchical Domain Partition , 2008, 2008 International Conference on Computational Intelligence for Modelling Control & Automation.

[2]  I-Cheng Yeh,et al.  Modeling of strength of high-performance concrete using artificial neural networks , 1998 .

[3]  H. Späth Mathematical algorithms for linear regression , 1991 .

[4]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[5]  Paul R. Kersten,et al.  Fuzzy order statistics and their application to fuzzy clustering , 1999, IEEE Trans. Fuzzy Syst..

[6]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[7]  Philip S. Yu,et al.  /spl delta/-clusters: capturing subspace correlation in a large data set , 2002, Proceedings 18th International Conference on Data Engineering.

[8]  Krzysztof Siminski,et al.  Rough Fuzzy Subspace Clustering for Data with Missing Values , 2014, Comput. Informatics.

[9]  Jacek M. Leski,et al.  Fuzzy c-ordered-means clustering , 2016, Fuzzy Sets Syst..

[10]  Kuo-Lung Wu,et al.  Unsupervised possibilistic clustering , 2006, Pattern Recognit..

[11]  Arthur Zimek,et al.  A survey on enhanced subspace clustering , 2013, Data Mining and Knowledge Discovery.

[12]  H. Karimi,et al.  Quantized ℋ∞ Filtering for Continuous‐Time Markovian Jump Systems with Deficient Mode Information , 2015 .

[13]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[14]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[15]  Jacek M. Leski,et al.  Fuzzy and Neuro-Fuzzy Intelligent Systems , 2000, Studies in Fuzziness and Soft Computing.

[16]  Krzysztof Siminski Improvement of Precision of Neuro-Fuzzy System by Increase of Activation of Rules , 2016, BDAS.

[17]  Jacek M. Leski,et al.  On robust fuzzy c-regression models , 2015, Fuzzy Sets Syst..

[18]  Abdelkader Chaari,et al.  A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization , 2012, Int. J. Appl. Math. Comput. Sci..

[19]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[20]  Krzysztof Simiński,et al.  Clustering in fuzzy subspaces , 2012 .

[21]  Jacek M. Łȩski,et al.  Neuro-fuzzy system with learning tolerant to imprecision , 2003 .

[22]  Philip S. Yu,et al.  Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD 2000.

[23]  Philip S. Yu,et al.  Fast algorithms for projected clustering , 1999, SIGMOD '99.

[24]  Jianhong Wu,et al.  A convergence theorem for the fuzzy subspace clustering (FSC) algorithm , 2008, Pattern Recognit..

[25]  Michael K. Ng,et al.  Subspace clustering with automatic feature grouping , 2015, Pattern Recognit..

[26]  Zijiang Yang,et al.  A Fuzzy Subspace Algorithm for Clustering High Dimensional Data , 2006, ADMA.

[27]  J. Łȩski,et al.  Generalized ordered linear regression with regularization , 2012 .

[28]  Hamid Reza Karimi,et al.  Model approximation for two-dimensional Markovian jump systems with state-delays and imperfect mode information , 2015, Multidimens. Syst. Signal Process..

[29]  J. Friedman,et al.  Clustering objects on subsets of attributes (with discussion) , 2004 .

[30]  Krzysztof Siminski,et al.  Patchwork Neuro-fuzzy System with Hierarchical Domain Partition , 2009, Computer Recognition Systems 3.

[31]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[32]  Marek Sikora,et al.  Application of machine learning for prediction a methane concentration in a coal-mine , 2006 .

[33]  Krzysztof Siminski,et al.  Neuro-fuzzy system with weighted attributes , 2013, Soft Computing.

[34]  Leszek Rutkowski,et al.  Flexible neuro-fuzzy systems , 2003, IEEE Trans. Neural Networks.

[35]  Aswin C. Sankaranarayanan,et al.  Greedy feature selection for subspace clustering , 2013, J. Mach. Learn. Res..

[36]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[37]  Thierry Denoeux,et al.  ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..

[38]  Stefan Jakubek,et al.  A local neuro-fuzzy network for high-dimensional models and optimization , 2006, Eng. Appl. Artif. Intell..

[39]  O. Mangasarian,et al.  Multisurface method of pattern separation for medical diagnosis applied to breast cytology. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Kruse,et al.  An extension to possibilistic fuzzy cluster analysis , 2004, Fuzzy Sets Syst..

[41]  Hui Xiong,et al.  A Generalization of Distance Functions for Fuzzy $c$ -Means Clustering With Centroids of Arithmetic Means , 2012, IEEE Transactions on Fuzzy Systems.

[42]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[43]  Robert Nowicki,et al.  Rough-Neuro-Fuzzy System with MICOG Defuzzification , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[44]  Chen-Chia Chuang,et al.  A soft computing technique for noise data with outliers , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[45]  Song-Shyong Chen,et al.  Robust TSK fuzzy modeling for function approximation with outliers , 2001, IEEE Trans. Fuzzy Syst..