One-sided stability and convergence of the Nessyahu–Tadmor scheme

Non-oscillatory schemes are widely used in numerical approximations of nonlinear conservation laws. The Nessyahu–Tadmor (NT) scheme is an example of a second order scheme that is both robust and simple. In this paper, we prove a new stability property of the NT scheme based on the standard minmod reconstruction in the case of a scalar strictly convex conservation law. This property is similar to the One-sided Lipschitz condition for first order schemes. Using this new stability, we derive the convergence of the NT scheme to the exact entropy solution without imposing any nonhomogeneous limitations on the method. We also derive an error estimate for monotone initial data.

[1]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[2]  B. Popov,et al.  Weakly Non-Oscillatory Schemes for Scalar Conservation Laws , 2001 .

[3]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[4]  Bojan Popov,et al.  Order of convergence of second order schemes based on the minmod limiter , 2006, Math. Comput..

[5]  Chi-Wang Shu Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .

[6]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[7]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[8]  B. Perthame,et al.  Kruzkov's estimates for scalar conservation laws revisited , 1998 .

[9]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[10]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[11]  Yann Brenier,et al.  The discrete one-sided Lipschitz condition for convex scalar conservation laws , 1988 .

[12]  P. Lax,et al.  Systems of conservation laws , 1960 .

[13]  Florin Sabac,et al.  The Optimal Convergence Rate of Monotone Finite Difference Methods for Hyperbolic Conservation Laws , 1997 .

[14]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[15]  G.-S. Jiangy,et al.  High-resolution Non-oscillatory Central Schemes with Non-staggered Grids for Hyperbolic Conservation Laws Dedicated to Our Friend and Colleague , 1997 .

[16]  Huanan Yang,et al.  On Wavewise Entropy Inequality for High Resolution Schemes II: Fully Discrete MUSCL Schemes with Exact Evolution in Small Time , 1998 .

[17]  N. N. Kuznetsov Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .

[18]  P. Souganidis,et al.  Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations , 1995 .

[19]  Kirill Kopotun,et al.  Weakly nonoscillatory schemes for scalar conservation laws , 2003, Math. Comput..

[20]  S. Osher,et al.  High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .

[21]  Bojan Popov,et al.  On Convergence of Minmod-Type Schemes , 2004, SIAM J. Numer. Anal..

[22]  Benoît Perthame,et al.  Un exemple de méthode MUSCL satisfaisant toutes les inégalités d'entropie numériques , 1993 .

[23]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[24]  Tao Tang,et al.  The sharpness of Kuznetsov's O D x L 1 -error estimate for monotone difference schemes , 1995 .

[25]  Jian-Guo Liu,et al.  Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions , 1999, Math. Comput..

[26]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[27]  Huanan Yang,et al.  On wavewise entropy inequalities for high-resolution schemes. I: The semidiscrete case , 1996, Math. Comput..

[28]  Eitan Tadmor,et al.  The convergence rate of approximate solutions for nonlinear scalar conservation laws. Final Report , 1991 .