Satellite DNA: An Evolving Topic

Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.

[1]  S. Kit,et al.  Equilibrium sedimentation in density gradients of DNA preparations from animal tissues. , 1961, Journal of molecular biology.

[2]  N. Sueoka Variation and heterogeneity of base composition of deoxyribonucleic acids: A compilation of old and new data , 1961 .

[3]  R. Britten,et al.  Nucleotide Sequence Repetition: A Rapidly Reassociating Fraction of Mouse DNA , 1966, Science.

[4]  R. Britten,et al.  Repeated Sequences in DNA , 1968 .

[5]  J. Gall,et al.  Chromosomal Localization of Mouse Satellite DNA , 1970, Science.

[6]  D E Graham,et al.  Analysis of repeating DNA sequences by reassociation. , 1974, Methods in enzymology.

[7]  W. Salser,et al.  Nucleotide sequences of HS-α satellite DNA from kangaroo rat dipodomys ordii and characterization of similar sequences in other rodents , 1977, Cell.

[8]  H. Zachau,et al.  Characterization of distinct segments in mouse satellite DNA by restriction nucleases. , 1977, European journal of biochemistry.

[9]  H. Zachau,et al.  Nucleotide sequence of a highly repetitive component of rat DNA. , 1979, Nucleic acids research.

[10]  J. Varley,et al.  Satellite DNA is transcribed on lampbrush chromosomes , 1980, Nature.

[11]  M. Diaz,et al.  Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt notophthalmus , 1981, Cell.

[12]  M. Singer Highly repeated sequences in mammalian genomes. , 1982, International review of cytology.

[13]  G. Dover,et al.  Molecular drive: a cohesive mode of species evolution , 1982, Nature.

[14]  T. Strachan,et al.  Modes and rates of change of complex DNA families of Drosophila. , 1982, Journal of molecular biology.

[15]  Molecular drive. , 2002, Science.

[16]  T. Strachan,et al.  Transition stages of molecular drive in multiple‐copy DNA families in Drosophila , 1985, The EMBO journal.

[17]  M. Frommer,et al.  Sequence relationships of three human satellite DNAs. , 1986, Journal of molecular biology.

[18]  J. Gall,et al.  Transcription of a satellite DNA in the newt , 1986, The Journal of cell biology.

[19]  Ú. Árnason,et al.  Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA , 1986 .

[20]  J. Camacho,et al.  New hypotheses about the origin of supernumerary chromosome segments in grasshoppers , 1987, Heredity.

[21]  Huntington F. Willard,et al.  Hierarchical order in chromosome-specific human alpha satellite DNA , 1987 .

[22]  D. Schweizer,et al.  A model for heterochromatin dispersion and the evolution of C-band patterns , 1987 .

[23]  H. Masumoto,et al.  A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite , 1989, The Journal of cell biology.

[24]  H. Willard,et al.  Genomic analysis of sequence variation in tandemly repeated DNA. Evidence for localized homogeneous sequence domains within arrays of alpha-satellite DNA. , 1990, Journal of molecular biology.

[25]  M. V. Vol’kenshtein [Molecular drive]. , 1990, Molekuliarnaia biologiia.

[26]  Ú. Árnason,et al.  Mysticete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite. , 1992, Molecular biology and evolution.

[27]  H. Masumoto,et al.  Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box , 1992, The Journal of cell biology.

[28]  L. Bachmann,et al.  Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. , 1993, Molecular biology and evolution.

[29]  J. Elder,et al.  Concerted evolution at the population level: pupfish HindIII satellite DNA sequences. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Parker,et al.  Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa , 1994, Heredity.

[31]  M. Garrido-Ramos,et al.  Cloning and characterization of a fish centromeric satellite DNA. , 1994, Cytogenetics and cell genetics.

[32]  M. Garrido-Ramos,et al.  The EcoRI centromeric satellite DNA of the Sparidae family (Pisces, Perciformes) contains a sequence motive common to other vertebrate centromeric satellite DNAs. , 1995, Cytogenetics and cell genetics.

[33]  N. Jouve,et al.  Fluorescent in situ hybridization and C-banding analyses of highly repetitive DNA sequences in the heterochromatin of rye (Secale montanum Guss.) and wheat incorporating S. montanum chromosome segments. , 1995, Genome.

[34]  M. Plohl,et al.  Characterization of a complex satellite DNA in the mollusc Donax trunculus: analysis of sequence variations and divergence. , 1996, Gene.

[35]  M. Plohl,et al.  Satellite DNA of the red flour beetle Tribolium castaneum--comparative study of satellites from the genus Tribolium. , 1996, Molecular biology and evolution.

[36]  M. Steinemann,et al.  The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. , 1997, Genetics.

[37]  H. Biessmann,et al.  Telomere maintenance without telomerase. , 1997, Chromosoma.

[38]  M. Garrido-Ramos,et al.  A satellite DNA of the Sparidae family (Pisces, Perciformes) associated with telomeric sequences , 1999, Cytogenetic and Genome Research.

[39]  M. Plohl,et al.  Evolution of satellite DNAs from the genus Palorus--experimental evidence for the "library" hypothesis. , 1998, Molecular biology and evolution.

[40]  M. Hizume,et al.  Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa , 1999, Chromosoma.

[41]  M. Garrido-Ramos,et al.  A subtelomeric satellite DNA family isolated from the genome of the dioecious plant Silene latifolia. , 1999, Genome.

[42]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[43]  M. Garrido-Ramos,et al.  Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes). , 1999, Molecular phylogenetics and evolution.

[44]  J. Werren,et al.  Evolution of Tandemly Repeated Sequences: What Happens at the End of an Array? , 1999, Journal of Molecular Evolution.

[45]  V. Vasil'ev Polyploidization by reticular speciation in Acipenseriform evolution: a working hypothesis , 1999 .

[46]  D. Charlesworth,et al.  Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution , 2000, Nature.

[47]  M. Garrido-Ramos,et al.  A heterochromatic satellite DNA is highly amplified in a single chromosome of Muscari (Hyacinthaceae) , 2001, Chromosoma.

[48]  M. Hizume,et al.  Molecular cytogenetic analysis of supernumerary heterochromatic segments in Rumex acetosa. , 2000, Genome.

[49]  S. Halford Practical In Situ Hybridization , 2000, Heredity.

[50]  C. Mello,et al.  Genetic requirements for inheritance of RNAi in C. elegans. , 2000, Science.

[51]  J. Macas,et al.  Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR , 2000, Molecular and General Genetics MGG.

[52]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[53]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[54]  M. Garrido-Ramos,et al.  The molecular phylogeny of the Sparidae (Pisces, Perciformes) based on two satellite DNA families , 2001, Heredity.

[55]  M. Garrido-Ramos,et al.  Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. , 2001, Molecular biology and evolution.

[56]  S. Henikoff,et al.  Adaptive evolution of Cid, a centromere-specific histone in Drosophila. , 2001, Genetics.

[57]  THE INTERSPECIFIC ORIGIN OF B CHROMOSOMES: EXPERIMENTAL EVIDENCE , 2001, Evolution; international journal of organic evolution.

[58]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[59]  M. Plohl,et al.  Sequence of PRAT Satellite DNA ``Frozen'' in Some Coleopteran Species , 2002, Journal of Molecular Evolution.

[60]  Daniel G Peterson,et al.  Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. , 2002, Genome research.

[61]  C. Azzalin,et al.  Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution , 2002, Human Genetics.

[62]  J. Pons,et al.  Evolutionary dynamics of satellite DNA family PIM357 in species of the genus Pimelia (Tenebrionidae, Coleoptera). , 2002, Molecular biology and evolution.

[63]  D. Charlesworth,et al.  Plant sex determination and sex chromosomes , 2002, Heredity.

[64]  Jiming Jiang,et al.  Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. , 2002, Genetics.

[65]  J. Olivo-Marin,et al.  Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast , 2002, Nature Cell Biology.

[66]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[67]  P. Jeffrey,et al.  Regulation of Heterochromatic Silencing and Histone H 3 Lysine-9 Methylation by RNAi , 2002 .

[68]  N. Jouve,et al.  Evolutionary trends of different repetitive DNA sequences during speciation in the genus secale. , 2002, The Journal of heredity.

[69]  T. Graves,et al.  The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes , 2003, Nature.

[70]  K. Choo,et al.  Transcription within a functional human centromere. , 2003, Molecular cell.

[71]  A. Luchetti,et al.  Unisexuality and Molecular Drive: Bag320 Sequence Diversity in Bacillus Taxa (Insecta Phasmatodea) , 2003, Journal of Molecular Evolution.

[72]  A. Luchetti,et al.  Polymerase chain reaction amplification of the Bag320 satellite family reveals the ancestral library and past gene conversion events in Bacillus rossius (Insecta Phasmatodea). , 2003, Gene.

[73]  M. Chase,et al.  Telomere variability in the monocotyledonous plant order Asparagales , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  Common origin of the satellite DNAs of the Hawaiian spiders of the genus Tetragnatha: evolutionary constraints on the length and nucleotide composition of the repeats. , 2003, Gene.

[75]  K. Fukui,et al.  Characterization of telomere-subtelomere junctions in Silene latifolia , 2003, Molecular Genetics and Genomics.

[76]  M. Garrido-Ramos,et al.  Phylogenetic Relationships of the Sparidae Family (Pisces, Perciformes) Inferred from Satellite‐DNA , 2004 .

[77]  James A. Birchler,et al.  Heterochromatic Silencing and HP1 Localization in Drosophila Are Dependent on the RNAi Machinery , 2004, Science.

[78]  H. Seuánez,et al.  Alpha satellite DNA in neotropical primates (Platyrrhini) , 1994, Chromosoma.

[79]  H. Riethman,et al.  Mapping and initial analysis of human subtelomeric sequence assemblies. , 2003, Genome research.

[80]  M. Garrido-Ramos,et al.  Chromosomal location and evolution of a satellite DNA family in seven sturgeon species , 2004, Chromosome Research.

[81]  M. Garrido-Ramos,et al.  Reduced Rates of Sequence Evolution of Y-Linked Satellite DNA in Rumex (Polygonaceae) , 2005, Journal of Molecular Evolution.

[82]  J. Varley,et al.  Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage in Triturus cristatus carnifex , 2004, Chromosoma.

[83]  M. Oshimura,et al.  Dicer is essential for formation of the heterochromatin structure in vertebrate cells , 2004, Nature Cell Biology.

[84]  M. Plohl,et al.  Analysis of divergence of Alphitobius diaperinus satellite DNA — roles of recombination, replication slippage and gene conversion , 1994, Molecular and General Genetics MGG.

[85]  J. S. Heslop-Harrison,et al.  Comparative analysis of the nucleosomal structure of rye, wheat and their relatives , 2004, Plant Molecular Biology.

[86]  H. Masumoto,et al.  The role of CENP-B and α-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres , 2004, Chromosome Research.

[87]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[88]  J. Pons,et al.  Complex structural features of satellite DNA sequences in the genus Pimelia (Coleoptera: Tenebrionidae): random differential amplification from a common ‘satellite DNA library’ , 2004, Heredity.

[89]  L. Bachmann,et al.  Characterization of a species-specific satellite DNA family of Dolichopoda schiavazzii (Orthoptera, Rhaphidophoridae) cave crickets , 1994, Journal of Molecular Evolution.

[90]  A. Ludwig,et al.  Evolution of ancient satellite DNAs in sturgeon genomes. , 2004, Gene.

[91]  J. S. Heslop-Harrison,et al.  Centromeric repetitive DNA sequences in the genus Brassica , 1995, Theoretical and Applied Genetics.

[92]  M. Plohl,et al.  Preservation and High Sequence Conservation of Satellite DNAs Suggest Functional Constraints , 2005, Journal of Molecular Evolution.

[93]  A. Tinaut,et al.  Evolutionary dynamics of satellite DNA in species of the Genus Formica (Hymenoptera, Formicidae). , 2004, Gene.

[94]  J. Camacho,et al.  Male and female segregation distortion for heterochromatic supernumerary segments on the S8 chromosome of the grasshopper Chorthippus jacobsi , 1992, Chromosoma.

[95]  G. Almouzni,et al.  Mouse centric and pericentric satellite repeats form distinct functional heterochromatin , 2004, The Journal of cell biology.

[96]  M. Garrido-Ramos,et al.  The molecular phylogeny of oysters based on a satellite DNA related to transposons. , 2004, Gene.

[97]  M. Hizume,et al.  Differentiation and the Polymorphic Nature of the Y Chromosomes Revealed by Repetitive Sequences in the Dioecious Plant, Rumex Acetosa , 2004, Chromosome Research.

[98]  Ú. Árnason,et al.  Evolution of the common cetacean highly repetitive DNA component and the systematic position of Orcaella brevirostris , 1992, Journal of Molecular Evolution.

[99]  B. John,et al.  Equilocality of heterochromatin distribution and heterochromatin heterogeneity in acridid grasshoppers , 2004, Chromosoma.

[100]  I. Schubert,et al.  Terminal Heterochromatin and Alternative Telomeric Sequences in Allium Cepa , 1998, Chromosome Research.

[101]  D. Ward,et al.  Presence and abundance of CENP-B box sequences in great ape subsets of primate-specific α-satellite DNA , 1995, Journal of Molecular Evolution.

[102]  Y. Yurov,et al.  The phylogeny of human chromosome specific alpha satellites , 2004, Chromosoma.

[103]  M. Diaz,et al.  Histone genes are located at the sphere loci of newt lampbrush chromosomes , 2004, Chromosoma.

[104]  I. Feliciello,et al.  The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA. , 2005, Gene.

[105]  M. Chamberlin,et al.  Microsatellite megatracts in the maize (Zea mays L.) genome. , 2005, Genome.

[106]  M. Garrido-Ramos,et al.  The controversial telomeres of lily plants , 2005, Cytogenetic and Genome Research.

[107]  Durdica Ugarkovic,et al.  Functional elements residing within satellite DNAs , 2005, EMBO reports.

[108]  D. Segal,et al.  Evidence for rolling circle replication of tandem genes in Drosophila , 2005, Nucleic acids research.

[109]  N. Jouve,et al.  Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6×-triticale , 1994, Chromosome Research.

[110]  Jiming Jiang,et al.  Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. , 2005, Molecular biology and evolution.

[111]  J. Ikeda,et al.  Characterization of DNA sequences constituting the terminal heterochromatin of the chicken Z chromosome , 1996, Chromosome Research.

[112]  Seung-Beom Hong,et al.  Sequence and evolution of rhesus monkey alphoid DNA , 2005, Journal of Molecular Evolution.

[113]  Huntington F Willard,et al.  Progressive proximal expansion of the primate X chromosome centromere. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[114]  B. Mantovani,et al.  Non-concerted evolution of the RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera) , 2006, Genetica.

[115]  S. Vaishnavi,et al.  Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. , 2005, The Journal of heredity.

[116]  H. Riethman,et al.  Human subtelomere structure and variation , 2005, Chromosome Research.

[117]  Ilia J. Leitch,et al.  Genome Size Evolution in Plants , 2005 .

[118]  S. Riva,et al.  Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. , 2005, Molecular biology of the cell.

[119]  A. Vershinin,et al.  Chromosome ends: different sequences may provide conserved functions , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[120]  M. Jantsch,et al.  Meiotic chromosome behaviour reflects levels of sequence divergence inSus scrofa domestica satellite DNA , 1990, Chromosoma.

[121]  I. Solovei,et al.  Transcription on lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement , 1996, Chromosome Research.

[122]  T. Schwarzacher,et al.  Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae , 2005, Cytogenetic and Genome Research.

[123]  R. Martienssen,et al.  Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats , 2005, PLoS genetics.

[124]  E. Blackburn,et al.  Telomeres and telomerase: their mechanisms of action and the effects of altering their functions , 2005, FEBS letters.

[125]  T. Gregory Genome Size Evolution in Animals , 2005 .

[126]  Shridar Ganesan,et al.  Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. , 2005, Genes & development.

[127]  M. Garrido-Ramos,et al.  Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa. , 2006, Genome.

[128]  P. Castagnone-Sereno,et al.  Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. , 2006, Molecular biology and evolution.

[129]  I. Feliciello,et al.  Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. , 2006, Gene.

[130]  B. Sullivan,et al.  Structural and functional dynamics of human centromeric chromatin. , 2006, Annual review of genomics and human genetics.

[131]  Huntington F Willard,et al.  The evolutionary dynamics of alpha-satellite. , 2005, Genome research.

[132]  R. Baker,et al.  Phylogenetic Analysis of Fungal Centromere H3 Proteins , 2006, Genetics.

[133]  C. Francastel,et al.  Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[134]  J. Macas,et al.  Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species , 2006, Chromosoma.

[135]  R. O’Neill,et al.  Cytogenetic and Molecular Evaluation of Centromere-Associated DNA Sequences From a Marsupial (Macropodidae: Macropus rufogriseus) X Chromosome , 2006, Genetics.

[136]  S. Henikoff,et al.  Centromeres put epigenetics in the driver's seat. , 2006, Trends in biochemical sciences.

[137]  M. Chase,et al.  Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. , 2006, The Plant journal : for cell and molecular biology.

[138]  M. Chase,et al.  Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. , 2006, American journal of botany.

[139]  Wenli Zhang,et al.  Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryzarhizomatis , 2006, Molecular Genetics and Genomics.

[140]  E. Kejnovský,et al.  An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution , 2006, Chromosoma.

[141]  Jiming Jiang,et al.  Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. , 2006, Molecular biology and evolution.

[142]  S. Jackson,et al.  Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. , 2006, Genome research.

[143]  Y. Kazama,et al.  The clustering of four subfamilies of satellite DNA at individual chromosome ends in Silene latifolia. , 2006, Genome.

[144]  M. Garrido-Ramos,et al.  The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. , 2006, Gene.

[145]  M. Plohl,et al.  Satellite DNA junctions identify the potential origin of new repetitive elements in the beetle Tribolium madens. , 2007, Gene.

[146]  R. Hannan,et al.  Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. , 2007, Genome research.

[147]  M. Garrido-Ramos,et al.  Satellite-DNA evolutionary patterns under a complex evolutionary scenario: the case of Acrolophus subgroup (Centaurea L., Compositae) from the western Mediterranean. , 2007, Gene.

[148]  Gary Benson,et al.  TRDB—The Tandem Repeats Database , 2006, Nucleic Acids Res..

[149]  Timothy B. Stockwell,et al.  The Diploid Genome Sequence of an Individual Human , 2007, PLoS biology.

[150]  C. Azzalin,et al.  Telomeric Repeat–Containing RNA and RNA Surveillance Factors at Mammalian Chromosome Ends , 2007, Science.

[151]  Cristina Rubio-Escudero,et al.  SatDNA Analyzer: a computing tool for satellite-DNA evolutionary analysis , 2007, Bioinform..

[152]  Süleyman Cenk Sahinalp,et al.  Organization and Evolution of Primate Centromeric DNA from Whole-Genome Shotgun Sequence Data , 2007, PLoS Comput. Biol..

[153]  M. Garrido-Ramos,et al.  The evolution of sex chromosomes in the genus Rumex (Polygonaceae): Identification of a new species with heteromorphic sex chromosomes , 2007, Chromosome Research.

[154]  L. Singh,et al.  Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. , 2007, Genome research.

[155]  G. Kuhn,et al.  Low rates of homogenization of the DBC-150 satellite DNA family restricted to a single pair of microchromosomes in species from the Drosophila buzzatii cluster , 2007, Chromosome Research.

[156]  Bronwen L. Aken,et al.  Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences , 2007, Nature.

[157]  N. Jouve,et al.  The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes , 2007, Chromosome Research.

[158]  Pavel Neumann,et al.  Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula , 2007, BMC Genomics.

[159]  P. Lorite,et al.  Satellite DNA in insects: a review , 2008, Heredity.

[160]  E. Kejnovský,et al.  Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes , 2009, Molecular Genetics and Genomics.

[161]  R. O’Neill,et al.  A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres , 2009, Chromosoma.

[162]  M. Blasco,et al.  Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II , 2008, Nature Cell Biology.

[163]  Zhijian Li,et al.  The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. , 2008, Molecules and Cells.

[164]  H. Kato,et al.  KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state , 2008, Cell cycle.

[165]  Ž. Pezer,et al.  Role of non-coding RNA and heterochromatin in aneuploidy and cancer. , 2008, Seminars in cancer biology.

[166]  M. Garrido-Ramos,et al.  The centromeric satellite of the wedge sole (Dicologoglossa cuneata, Pleuronectiformes) is composed mainly of a sequence motif conserved in other vertebrate centromeric DNAs , 2008, Cytogenetic and Genome Research.

[167]  D. Charlesworth Plant sex chromosomes. , 2008, Genome dynamics.

[168]  Jiming Jiang,et al.  Epigenetic Modification of Centromeric Chromatin: Hypomethylation of DNA Sequences in the CENH3-Associated Chromatin in Arabidopsis thaliana and Maize[W][OA] , 2008, The Plant Cell Online.

[169]  Miroslav Plohl,et al.  Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. , 2008, Gene.

[170]  Rafael Navajas-Pérez,et al.  Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome system , 2008, Genetica.

[171]  E. Kejnovský,et al.  Microsatellite accumulation on the Y chromosome in Silene latifolia. , 2008, Genome.

[172]  D. Barbash,et al.  Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila , 2009, PLoS biology.

[173]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[174]  W. Jin,et al.  An overview of plant centromeres. , 2009, Journal of genetics and genomics = Yi chuan xue bao.

[175]  E. Eichler,et al.  New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset. , 2009, Molecular biology and evolution.

[176]  L. Bachmann,et al.  Molecular evolution of the pDo500 satellite DNA family in Dolichopoda cave crickets (Rhaphidophoridae) , 2009, BMC Evolutionary Biology.

[177]  M. Garrido-Ramos,et al.  Characterization of RUSI, a telomere-associated satellite DNA, in the genus Rumex (Polygonaceae) , 2009, Cytogenetic and Genome Research.

[178]  A. Alexandrov,et al.  The Evolutionary Origin of Man Can Be Traced in the Layers of Defunct Ancestral Alpha Satellites Flanking the Active Centromeres of Human Chromosomes , 2009, PLoS genetics.

[179]  P. Warburton,et al.  A paucity of heterochromatin at functional human neocentromeres , 2010, Epigenetics & Chromatin.

[180]  Thomas J. Hardcastle,et al.  Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA , 2009, EMBO Journal.

[181]  J. Macas,et al.  Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing , 2010, BMC Plant Biology.

[182]  Pavel Neumann,et al.  Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. , 2009, Gene.

[183]  M. Garrido-Ramos,et al.  Effect of location, organization, and repeat-copy number in satellite-DNA evolution , 2009, Molecular Genetics and Genomics.

[184]  J. N. MacLeod,et al.  Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse , 2009, Science.

[185]  Ž. Pezer,et al.  Transcription of Pericentromeric Heterochromatin in Beetles – Satellite DNAs as Active Regulatory Elements , 2009, Cytogenetic and Genome Research.

[186]  D. Segal,et al.  Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells , 2010, Mobile DNA.

[187]  S. Henikoff,et al.  Major Evolutionary Transitions in Centromere Complexity , 2009, Cell.

[188]  S. Henikoff,et al.  Evolution of Centromeres and Kinetochores: A Two-Part Fugue , 2009 .

[189]  H. Riethman,et al.  TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. , 2009, Molecular cell.

[190]  F. Berger,et al.  A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells , 2009, Nucleic acids research.

[191]  A. Houben,et al.  Rye B chromosomes are weakly transcribed and might alter the transcriptional activity of A chromosome sequences , 2009, Chromosoma.

[192]  J. Macas,et al.  Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data , 2010, BMC Bioinformatics.

[193]  Jan Vrbsky,et al.  siRNA–Mediated Methylation of Arabidopsis Telomeres , 2010, PLoS genetics.

[194]  Pavel Neumann,et al.  Plant centromeric retrotransposons: a structural and cytogenetic perspective , 2011, Mobile DNA.

[195]  J. Cooper,et al.  HAATI survivors replace canonical telomeres with blocks of generic heterochromatin , 2010, Nature.

[196]  A. Ricci,et al.  Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks , 2010, Heredity.

[197]  M. Plohl,et al.  Parallelism in evolution of highly repetitive DNAs in sibling species. , 2010, Molecular biology and evolution.

[198]  Tetsuya Hori,et al.  Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. , 2010, Genome research.

[199]  E. Green,et al.  Adaptive evolution of foundation kinetochore proteins in primates. , 2010, Molecular biology and evolution.

[200]  Can Alkan,et al.  Genome-wide characterization of centromeric satellites from multiple mammalian genomes. , 2011, Genome research.

[201]  Juliane C. Dohm,et al.  Epigenetic profiling of heterochromatic satellite DNA , 2011, Chromosoma.

[202]  M. Plohl,et al.  TCAGG, an alternative telomeric sequence in insects , 2011, Chromosoma.

[203]  Kerry Bloom,et al.  Centromeres: unique chromatin structures that drive chromosome segregation , 2011, Nature Reviews Molecular Cell Biology.

[204]  A. Iafrate,et al.  Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers , 2011, Science.

[205]  J. Macas,et al.  Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia , 2011, PloS one.

[206]  I. Feliciello,et al.  Structure and population dynamics of the major satellite DNA in the red flour beetle Tribolium castaneum , 2011, Genetica.

[207]  Richard M. Clark,et al.  The Arabidopsis lyrata genome sequence and the basis of rapid genome size change , 2011, Nature Genetics.

[208]  G. Bryan,et al.  Organization and Evolution of Subtelomeric Satellite Repeats in the Potato Genome , 2011, G3: Genes | Genomes | Genetics.

[209]  Albert J. Vilella,et al.  Comparative and demographic analysis of orang-utan genomes , 2011, Nature.

[210]  P. Bureš,et al.  Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. , 2011, Annals of botany.

[211]  M. Garrido-Ramos,et al.  A satellite DNA evolutionary analysis in the North American endemic dioecious plant Rumex hastatulus (Polygonaceae). , 2011, Genome.

[212]  F. Han,et al.  Inactivation of a centromere during the formation of a translocation in maize , 2011, Chromosome Research.

[213]  M. Garrido-Ramos,et al.  Concerted evolution of satellite DNA in Sarcocapnos: a matter of time , 2011, Plant Molecular Biology.

[214]  Fred H. Gage,et al.  BRCA1 tumor suppression occurs via heterochromatin mediated silencing , 2011, Nature.

[215]  M. Blasco,et al.  Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins , 2011, Nature Reviews Cancer.

[216]  D. Ray,et al.  Survey Sequencing Reveals Elevated DNA Transposon Activity, Novel Elements, and Variation in Repetitive Landscapes among Vesper Bats , 2012, Genome biology and evolution.

[217]  P. Bureš,et al.  Evidence for Centromere Drive in the Holocentric Chromosomes of Caenorhabditis , 2012, PloS one.

[218]  Daniël P. Melters,et al.  Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis , 2012, Chromosome Research.

[219]  Ž. Pezer,et al.  Satellite DNA-associated siRNAs as mediators of heat shock response in insects , 2012, RNA biology.

[220]  Andreas Rechtsteiner,et al.  An inverse relationship to germline transcription defines centromeric chromatin in C. elegans , 2012, Nature.

[221]  H. Gundlach,et al.  Research article Next-Generation Sequencing Reveals the Impact of Repetitive DNA Across Phylogenetically Closely Related Genomes of Orobanchaceae , 2012 .

[222]  E. Casacuberta,et al.  Drosophila telomeres: an example of co-evolution with transposable elements. , 2012, Genome dynamics.

[223]  F. Han,et al.  Dicentric chromosome formation and epigenetics of centromere formation in plants. , 2012, Journal of genetics and genomics = Yi chuan xue bao.

[224]  J. Camacho,et al.  B-Chromosome Ribosomal DNA Is Functional in the Grasshopper Eyprepocnemis plorans , 2012, PloS one.

[225]  Jeffrey Ross-Ibarra,et al.  Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution , 2012, Genome Biology.

[226]  N. Jouve,et al.  Cytogenetic diversity of SSR motifs within and between Hordeum species carrying the H genome: H. vulgare L. and H. bulbosum L. , 2012, Theoretical and Applied Genetics.

[227]  I. Feliciello,et al.  Satellite DNA-Like Elements Associated With Genes Within Euchromatin of the Beetle Tribolium castaneum , 2012, G3: Genes | Genomes | Genetics.

[228]  Jiming Jiang,et al.  Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W] , 2012, Plant Cell.

[229]  A. Londoño-Vallejo,et al.  Telomere dynamics in mammals. , 2012, Genome dynamics.

[230]  R. Dawe,et al.  RNA as a structural and regulatory component of the centromere. , 2012, Annual review of genetics.

[231]  J. Macas,et al.  Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains , 2012, PLoS genetics.

[232]  I. Feliciello,et al.  Satellite DNA-mediated effects on genome regulation. , 2012, Genome dynamics.

[233]  G. Kuhn,et al.  The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. , 2012, Molecular biology and evolution.

[234]  A. Decottignies,et al.  Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α , 2012, Nature Structural &Molecular Biology.

[235]  M. Plohl,et al.  Satellite DNA evolution. , 2012, Genome dynamics.

[236]  H. Kimura,et al.  Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function , 2012, Journal of Cell Science.

[237]  M. Garrido-Ramos,et al.  The repetitive DNA content of eukaryotic genomes. , 2012, Genome dynamics.

[238]  Jiming Jiang,et al.  Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species , 2012, Chromosome Research.

[239]  Owen J. Marshall,et al.  Active transcription and essential role of RNA polymerase II at the centromere during mitosis , 2012, Proceedings of the National Academy of Sciences.

[240]  Chee Keong Kwoh,et al.  Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance , 2013, Briefings Bioinform..

[241]  M. Escudero,et al.  Holocentric Chromosomes , 2013 .

[242]  S. Jackson,et al.  The Subtelomeric khipu Satellite Repeat from Phaseolus vulgaris: Lessons Learned from the Genome Analysis of the Andean Genotype G19833 , 2013, Front. Plant Sci..

[243]  S. Henikoff,et al.  The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres , 2013, Proceedings of the National Academy of Sciences.

[244]  J. Schmutz,et al.  Identification and characterization of functional centromeres of the common bean. , 2013, The Plant journal : for cell and molecular biology.

[245]  Petr Novák,et al.  RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads , 2013, Bioinform..

[246]  T. Wicker,et al.  High-copy sequences reveal distinct evolution of the rye B chromosome. , 2013, The New phytologist.

[247]  J. Doležel,et al.  Molecular Analysis and Genomic Organization of Major DNA Satellites in Banana (Musa spp.) , 2013, PloS one.

[248]  R. B. Azevedo,et al.  On the Immortality of Television Sets: “Function” in the Human Genome According to the Evolution-Free Gospel of ENCODE , 2013, Genome biology and evolution.

[249]  J. A. Subirana,et al.  A Satellite Explosion in the Genome of Holocentric Nematodes , 2013, PloS one.

[250]  B. Lang,et al.  A Broad Phylogenetic Survey Unveils the Diversity and Evolution of Telomeres in Eukaryotes , 2013, Genome biology and evolution.

[251]  W. Jin,et al.  Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. , 2013, The Plant journal : for cell and molecular biology.

[252]  A. Koga,et al.  Higher-order repeat structure in alpha satellite DNA is an attribute of hominoids rather than hominids , 2013, Journal of Human Genetics.

[253]  Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus) , 2013, BMC Biology.

[254]  N. Jouve,et al.  Chromosomal Characterization of the Three Subgenomes in the Polyploids of Hordeum murinum L.: New Insight into the Evolution of This Complex , 2013, PloS one.

[255]  Xiu-Jie Wang,et al.  Formation of a Functional Maize Centromere after Loss of Centromeric Sequences and Gain of Ectopic Sequences[C][W] , 2013, Plant Cell.

[256]  Đ. Ugarković Evolution of Alpha Satellite DNA , 2013 .

[257]  M. Lexa,et al.  Contrasting Patterns of Transposable Element and Satellite Distribution on Sex Chromosomes (XY1Y2) in the Dioecious Plant Rumex acetosa , 2013, Genome biology and evolution.

[258]  W. Doolittle Is junk DNA bunk? A critique of ENCODE , 2013, Proceedings of the National Academy of Sciences.

[259]  M. Plohl,et al.  Tandem Repeat-Containing MITEs in the Clam Donax trunculus , 2013, Genome biology and evolution.

[260]  M. Garrido-Ramos,et al.  Differential spreading of HinfI satellite DNA variants during radiation in Centaureinae. , 2013, Annals of botany.

[261]  M. Platzer,et al.  The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. , 2013, The Plant journal : for cell and molecular biology.

[262]  E. Kejnovský,et al.  Expansion of Microsatellites on Evolutionary Young Y Chromosome , 2013, PloS one.

[263]  F. Perfectti,et al.  Possible Introgression of B Chromosomes between Bee Species (Genus Partamona) , 2015, Cytogenetic and Genome Research.

[264]  I. Jahan,et al.  Evolutionary Origin of Higher-Order Repeat Structure in Alpha-Satellite DNA of Primate Centromeres , 2014, DNA research : an international journal for rapid publication of reports on genes and genomes.

[265]  Holger Bierhoff,et al.  Noisy silence , 2014, Epigenetics.

[266]  S. Henikoff,et al.  Holocentromeres are dispersed point centromeres localized at transcription factor hotspots , 2014, eLife.

[267]  I. Feliciello,et al.  Satellite DNA as a Driver of Population Divergence in the Red Flour Beetle Tribolium castaneum , 2014, Genome biology and evolution.

[268]  Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division , 2014, The Journal of cell biology.

[269]  Tribe-specific satellite DNA in non-domestic Bovidae , 2014, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology.

[270]  S. Henikoff,et al.  Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects , 2014, eLife.

[271]  A. Ruíz,et al.  Tetris Is a Foldback Transposon that Provided the Building Blocks for an Emerging Satellite DNA of Drosophila virilis , 2014, Genome biology and evolution.

[272]  A. Clark,et al.  Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster , 2014, Proceedings of the National Academy of Sciences.

[273]  J. Macas,et al.  Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae) , 2014, Annals of botany.

[274]  M. Plohl,et al.  Centromere identity from the DNA point of view , 2014, Chromosoma.

[275]  A. Larracuente The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive , 2014, BMC Evolutionary Biology.

[276]  Nicolas Altemose,et al.  Centromere reference models for human chromosomes X and Y satellite arrays , 2013, Genome research.

[277]  Satellite-DNA diversification and the evolution of major lineages in Cardueae (Carduoideae Asteraceae) , 2014, Journal of Plant Research.

[278]  Young Bun Kim,et al.  Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel , 2014, Proceedings of the National Academy of Sciences.

[279]  C. Allis,et al.  ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons , 2014, Proceedings of the National Academy of Sciences.

[280]  Y. Totoki,et al.  Involvement of Telomerase Reverse Transcriptase in Heterochromatin Maintenance , 2014, Molecular and Cellular Biology.

[281]  Y. Dalal,et al.  A long non-coding RNA is required for targeting centromeric protein A to the human centromere , 2014, eLife.

[282]  Jérôme Déjardin,et al.  Constitutive heterochromatin formation and transcription in mammals , 2014, Epigenetics & Chromatin.

[283]  M. Bakkali,et al.  A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs , 2014, Chromosoma.

[284]  J. Macas,et al.  Genome-Wide Analysis of Repeat Diversity across the Family Musaceae , 2014, PloS one.

[285]  W. Earnshaw,et al.  The Centromere: Chromatin Foundation for the Kinetochore Machinery , 2014, Developmental cell.

[286]  Yuji Takahashi,et al.  Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing , 2013, Bioinform..

[287]  G. Chinali,et al.  An ancient satellite DNA has maintained repetitive units of the original structure in most species of the living fossil plant genus Zamia. , 2014, Genome.

[288]  Shweta Mehrotra,et al.  Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function , 2014, Genom. Proteom. Bioinform..

[289]  T. Kocher,et al.  Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses. , 2014, Molecular biology and evolution.

[290]  P. Gunaratne,et al.  siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster , 2014, Proceedings of the National Academy of Sciences.

[291]  M. Garrido-Ramos Satellite DNA in Plants: More than Just Rubbish , 2015, Cytogenetic and Genome Research.

[292]  C. Baumann,et al.  ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo , 2015, Development.

[293]  J. S. Heslop-Harrison,et al.  Repetitive DNA in eukaryotic genomes , 2015, Chromosome Research.

[294]  Arpiar Saunders,et al.  Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive. , 2015, Molecular biology and evolution.

[295]  K. Srikulnath,et al.  Higher-order repeat structure in alpha satellite DNA occurs in New World monkeys and is not confined to hominoids , 2015, Scientific Reports.

[296]  V. Schubert,et al.  Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin , 2015, Proceedings of the National Academy of Sciences.

[297]  D. Ferreira,et al.  Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer , 2015, Chromosome Research.

[298]  Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae) , 2015, Chromosoma.

[299]  J. Fajkus,et al.  Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. , 2015, The Plant journal : for cell and molecular biology.

[300]  J. Macas,et al.  Employing next generation sequencing to explore the repeat landscape of the plant genome , 2015 .

[301]  Dan Graur,et al.  An Evolutionary Classification of Genomic Function , 2015, Genome biology and evolution.

[302]  A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs , 2015, Molecular Genetics and Genomics.

[303]  I. Feliciello,et al.  Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress , 2015, PLoS genetics.

[304]  M. Plohl,et al.  Structural and functional liaisons between transposable elements and satellite DNAs , 2015, Chromosome Research.

[305]  Mihaela M. Martis,et al.  Genes on B chromosomes: old questions revisited with new tools. , 2015, Biochimica et biophysica acta.

[306]  R. Hobza,et al.  The genomics of plant sex chromosomes. , 2015, Plant science : an international journal of experimental plant biology.

[307]  Detection of satellite alpha transcript in sera, as a surrogate marker for the risk of development of multiple cancers in colorectal cancer patients. , 2015 .

[308]  J. Macas,et al.  Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species , 2015, Molecular biology and evolution.

[309]  S. Henikoff,et al.  Diversity in the organization of centromeric chromatin. , 2015, Current opinion in genetics & development.

[310]  M. Plohl,et al.  Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms , 2015, DNA research : an international journal for rapid publication of reports on genes and genomes.

[311]  A. Luchetti terMITEs: miniature inverted-repeat transposable elements (MITEs) in the termite genome (Blattodea: Termitoidae) , 2015, Molecular Genetics and Genomics.

[312]  E. Kejnovský,et al.  Impact of repetitive DNA on sex chromosome evolution in plants , 2015, Chromosome Research.

[313]  P. Chartrand,et al.  Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity , 2015, Front. Genet..

[314]  B. Wittner,et al.  Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer , 2015, Proceedings of the National Academy of Sciences.

[315]  M. Albà,et al.  High evolutionary turnover of satellite families in Caenorhabditis , 2015, BMC Evolutionary Biology.

[316]  D. Cleveland,et al.  DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. , 2015, Developmental cell.

[317]  M. A. Biscotti,et al.  Transcription of tandemly repetitive DNA: functional roles , 2015, Chromosome Research.

[318]  S. Heckmann,et al.  Atypical centromeres in plants—what they can tell us , 2015, Front. Plant Sci..

[319]  Karen H. Miga Completing the human genome: the progress and challenge of satellite DNA assembly , 2015, Chromosome Research.

[320]  D. Moazed,et al.  RNA-mediated epigenetic regulation of gene expression , 2015, Nature Reviews Genetics.

[321]  H. Masumoto,et al.  Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys , 2016, Scientific Reports.

[322]  V. Schubert,et al.  Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species , 2016, Chromosoma.

[323]  D. Bertioli,et al.  Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species , 2016, Molecular Genetics and Genomics.

[324]  J. Gall The origin of in situ hybridization - A personal history. , 2016, Methods.

[325]  V. Thareau,et al.  Evolutionary dynamics of satellite DNA repeats from Phaseolus beans , 2016, Protoplasma.

[326]  V. Schubert,et al.  Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes , 2016, Front. Plant Sci..

[327]  R. Heald,et al.  Mitotic noncoding RNA processing promotes kinetochore and spindle assembly in Xenopus , 2016, The Journal of cell biology.

[328]  P. Bureš,et al.  CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model , 2016, Scientific Reports.

[329]  P. Bureš,et al.  Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. , 2016, Annals of botany.

[330]  Francisco J. Ruiz-Ruano,et al.  High-throughput analysis of the satellitome illuminates satellite DNA evolution , 2016, Scientific Reports.

[331]  M. Plohl,et al.  Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements , 2016, BMC Genomics.

[332]  Christophe Escudé,et al.  Diversity and distribution of alpha satellite DNA in the genome of an Old World monkey: Cercopithecus solatus , 2016, BMC Genomics.

[333]  Francisco J. Ruiz-Ruano,et al.  Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome , 2017, Chromosoma.

[334]  F. Cerutti,et al.  The major horse satellite DNA family is associated with centromere competence , 2016, Molecular Cytogenetics.

[335]  R. Heald,et al.  Transcription brings the complex(ity) to the centromere , 2017, Cell cycle.

[336]  G. Kuhn,et al.  Dissecting the Satellite DNA Landscape in Three Cactophilic Drosophila Sequenced Genomes , 2017, G3: Genes, Genomes, Genetics.

[337]  G. Dias,et al.  High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis , 2017, Scientific Reports.

[338]  Satellite alpha transcripts as a biomarker to predict the development of breast cancer with bilateral or multiple primary malignancies. , 2017 .

[339]  J. Lawrence,et al.  Demethylated HSATII DNA and HSATII RNA Foci Sequester PRC1 and MeCP2 into Cancer-Specific Nuclear Bodies. , 2017, Cell reports.

[340]  V. Meller,et al.  Satellite Repeats Identify X Chromatin for Dosage Compensation in Drosophila melanogaster Males , 2017, Current Biology.

[341]  Sex Differences: Satellite DNA Directs Male-Specific Gene Expression , 2017, Current Biology.

[342]  D. Bachtrog,et al.  Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects , 2016, The Journal of heredity.

[343]  A. Tinaut,et al.  Concerted evolution, a slow process for ant satellite DNA: study of the satellite DNA in the Aphaenogaster genus (Hymenoptera, Formicidae) , 2017, Organisms Diversity & Evolution.

[344]  Z. Herceg,et al.  Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional activation in response to heat shock , 2017, Scientific Reports.

[345]  Matko Gluncic,et al.  Regular Higher Order Repeat Structures in Beetle Tribolium castaneum Genome , 2016, Genome biology and evolution.

[346]  A. Larracuente,et al.  Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster , 2017, Genome research.

[347]  J. Macas,et al.  TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads , 2017, Nucleic acids research.

[348]  Overexpression of satellite alpha transcript in breast cancer patients to impair specific chromosomes. , 2017 .

[349]  Á. Cuadrado,et al.  Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease , 2017, PloS one.

[350]  A. Straight,et al.  RNA-mediated regulation of heterochromatin. , 2017, Current opinion in cell biology.