A Behavioral Approach to the Pole Structure of One-Dimensional and Multidimensional Linear Systems

We use the tools of behavioral theory and commutative algebra to produce a new definition of a (finite) pole of a linear system. This definition agrees with the classical one and allows a direct dynamical interpretation. It also generalizes immediately to the case of a multidimensional (nD) system. We make a natural division of the poles into controllable and uncontrollable poles. When the behavior in question has latent variables, we make a further division into observable and unobservable poles. In the case of a one-dimensional (1D) state-space model, the uncontrollable and unobservable poles correspond, respectively, to the input and output decoupling zeros, whereas the observable controllable poles are the transmission poles. Most of these definitions can be interpreted dynamically in both the 1D and nD cases, and some can be connected to properties of kernel representations. We also examine the connections between poles, transfer matrices, and their left and right matrix fraction descriptions (MFDs). We find behavioral results which correspond to the concepts that a controllable system is precisely one with no input decoupling zeros and an observable system is precisely one with no output decoupling zeros. We produce a decomposition of a behavior as the sum of subbehaviors associated with various poles. This is related to the integral representation theorem, which describes every system trajectory as a sum of integrals of polynomial exponential trajectories.

[1]  Dean Johnson Coprimeness in multidimensional system theory and symbolic computation , 1993 .

[2]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[3]  L. Hörmander,et al.  An introduction to complex analysis in several variables , 1973 .

[4]  M. Sain,et al.  Research on system zeros: a survey , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[5]  Virendra Sule,et al.  Algebraic geometric aspects of feedback stabilization , 1992 .

[6]  Eva Zerz,et al.  Notes on the definition of behavioural controllability , 1999 .

[7]  V. Palamodov,et al.  Linear Differential Operators with Constant Coefficients , 1970 .

[8]  David Mumford,et al.  What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.

[9]  Charles A. Desoer,et al.  Zeros and poles of matrix transfer functions and their dynamical interpretation , 1974 .

[10]  N. Karcanias,et al.  Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-variable theory , 1976 .

[11]  Henri Bourlès,et al.  Finite poles and zeros of linear systems: An intrinsic approach , 1997 .

[12]  Alban Quadrat,et al.  Algebraic analysis of linear multidimensional control systems , 1999 .

[13]  U. Oberst,et al.  Continuous-varying linear systems , 1998 .

[14]  R. Kálmán ALGEBRAIC STRUCTURE OF LINEAR DYNAMICAL SYSTEMS, I. THE MODULE OF Sigma. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Nicolas Bourbaki,et al.  Non Commutative Algebra , 1994 .

[16]  J. Willems On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..

[17]  Michael Sain,et al.  Module theoretic zero structures for system matrices , 1985, 1985 24th IEEE Conference on Decision and Control.

[18]  Joachim Rudolph,et al.  DUALITY IN TIME-VARYING LINEAR SYSTEMS : A MODULE THEORETIC APPROACH , 1996 .

[19]  D. Eisenbud,et al.  Direct methods for primary decomposition , 1992 .

[20]  Alan Dow,et al.  On Closed Subspaces of ω , 1993 .

[21]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[22]  Ulrich Oberst,et al.  Finite Dimensional Systems of Partial Differential or Difference Equations , 1996 .

[23]  Ulrich Oberst,et al.  The Construction of Noetherian Operators , 1999 .

[24]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[25]  R. Tennant Algebra , 1941, Nature.

[26]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[27]  E. Zerz Primeness of multivariate polynomial matrices , 1996 .

[28]  M. Fliess,et al.  Une interprétation algébrique de la transformation de laplace et des matrices de transfert , 1994 .

[29]  Jean-François Pommaret Partial Differential Equations and Group Theory: New Perspectives for Applications , 2014 .

[30]  A. M. Perdon,et al.  Zeros, poles and modules in linear system theory , 1989 .

[31]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[32]  Jan C. Willems,et al.  CLOSED SUBSPACES, POLYNOMIAL OPERATORS IN THE SHIFT, AND ARMA REPRESENTATIONS , 1991 .

[33]  R. Lathe Phd by thesis , 1988, Nature.

[34]  Jan-Erik Björk,et al.  Rings of differential operators , 1979 .

[35]  Ulrich Oberst,et al.  Multidimensional constant linear systems , 1990, EUROCAST.

[36]  Harish K. Pillai,et al.  A Behavioral Approach to Control of Distributed Systems , 1999 .

[37]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[38]  Thomas Kailath,et al.  Linear Systems , 1980 .

[39]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[40]  Eric Rogers,et al.  Controllable and Autonomous nD Linear Systems , 1999, Multidimens. Syst. Signal Process..

[41]  Maria Elena Valcher,et al.  Characteristic cones and stability properties of two-dimensional autonomous behaviors , 2000 .

[42]  Jan C. Willems,et al.  Common factors and controllability of nonlinear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[43]  L. Cooper,et al.  FOURIER ANALYSIS IN SEVERAL COMPLEX VARIABLES , 1972 .

[44]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[45]  S. Zampieri,et al.  State space realization of 2-D finite-dimensional behaviours , 1993 .

[46]  Jeffrey Wood,et al.  A formal theory of matrix primeness , 1998, Math. Control. Signals Syst..

[47]  Maria Paula Macedo Rocha,et al.  Structure and representation of 2-D systems , 1990 .