Metagenomic insights into the effects of organic and inorganic agricultural managements on soil phosphorus cycling

[1]  Z. Cui,et al.  Genome-Resolved Metagenomics Reveals Distinct Phosphorus Acquisition Strategies between Soil Microbiomes , 2022, mSystems.

[2]  Yaying Li,et al.  Organic phosphorus availability shapes the diversity of phoD-harboring bacteria in agricultural soil , 2021 .

[3]  H. Lambers,et al.  Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. , 2021, Trends in ecology & evolution.

[4]  Jizhong Zhou,et al.  Soil Biogeochemical Cycle Couplings Inferred from a Function-Taxon Network , 2021, Research.

[5]  Benjamin L Turner,et al.  The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities , 2020, mBio.

[6]  M. Bonkowski,et al.  Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences , 2020, Microbiome.

[7]  Kelin Wang,et al.  Phosphorus but not nitrogen addition significantly changes diazotroph diversity and community composition in typical karst grassland soil , 2020 .

[8]  Jian Peng,et al.  Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity , 2020, Nature Communications.

[9]  P. Brookes,et al.  Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems , 2019, The ISME Journal.

[10]  P. Nannipieri,et al.  Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization , 2019, Soil Biology and Biochemistry.

[11]  Kelin Wang,et al.  Resource limitation of soil microbes in karst ecosystems. , 2019, The Science of the total environment.

[12]  Xiangbi Chen,et al.  Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. , 2018, The Science of the total environment.

[13]  Sagar Dahal,et al.  Cementing the Organic Farming by Green Manures , 2018, International Journal of Applied Sciences and Biotechnology.

[14]  Christa Boer,et al.  Correlation Coefficients: Appropriate Use and Interpretation , 2018, Anesthesia and analgesia.

[15]  Kelin Wang,et al.  Determinants of soil extracellular enzyme activity in a karst region, southwest China , 2017 .

[16]  Yue Jin,et al.  DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways , 2016, Nature Communications.

[17]  J. Elser,et al.  Intensification of phosphorus cycling in China since the 1600s , 2016, Proceedings of the National Academy of Sciences.

[18]  H. Bücking,et al.  Role of Arbuscular Mycorrhizal Fungi in the Nitrogen Uptake of Plants: Current Knowledge and Research Gaps , 2015 .

[19]  Fernando Santos-Beneit,et al.  The Pho regulon: a huge regulatory network in bacteria , 2015, Front. Microbiol..

[20]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[21]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[22]  A. Srivastava,et al.  AMF-induced tolerance to drought stress in citrus: A review , 2013 .

[23]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[24]  Rob Knight,et al.  Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients , 2011, The ISME Journal.

[25]  R. Simpson,et al.  Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus , 2011, Plant Physiology.

[26]  Jean Dénarié,et al.  Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza , 2011, Nature.

[27]  S. Pellerin,et al.  Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model. , 2010 .

[28]  M. Borodovsky,et al.  Ab initio gene identification in metagenomic sequences , 2010, Nucleic acids research.

[29]  Yi-Ju Hsieh,et al.  Global regulation by the seven-component Pi signaling system. , 2010, Current opinion in microbiology.

[30]  P. Vitousek,et al.  Significant Acidification in Major Chinese Croplands , 2010, Science.

[31]  M. Oves,et al.  Plant growth promotion by phosphate solubilizing fungi – current perspective , 2010 .

[32]  B. Hill,et al.  Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment , 2009, Nature.

[33]  C. Cleveland,et al.  C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? , 2007 .

[34]  R. B. Jackson,et al.  Toward an ecological classification of soil bacteria. , 2007, Ecology.

[35]  Y. Bashan,et al.  Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria , 2006, Plant and Soil.

[36]  A. Hodge,et al.  Arbuscular mycorrhizal fungi and organic farming , 2006 .

[37]  J. Scholberg,et al.  Green Manure Approaches to Crop Production: A Synthesis , 2006 .

[38]  H. Di,et al.  Effect of Green Manure Addition on Soil Organic Phosphorus Mineralisation , 2005, Nutrient Cycling in Agroecosystems.

[39]  A. Yamaguchi,et al.  Genome-Wide Analyses of Escherichia coli Gene Expression Responsive to the BaeSR Two-Component Regulatory System , 2005, Journal of bacteriology.

[40]  M. Yamada,et al.  C-terminal Periplasmic Domain of Escherichia coliQuinoprotein Glucose Dehydrogenase Transfers Electrons to Ubiquinone* , 2001, The Journal of Biological Chemistry.

[41]  B. Wanner Gene regulation by phosphate in enteric bacteria , 1993, Journal of cellular biochemistry.

[42]  J. Barea,et al.  Endomycorrhizal fungi and Rhizobium as biological fertilisers for Medicago sativa in normal cultivation , 1979, Nature.

[43]  Stephen Porder,et al.  Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. , 2010, Ecological applications : a publication of the Ecological Society of America.

[44]  M. Ryan,et al.  The Role of Arbuscular Mycorrhizas in Organic Farming , 2009 .

[45]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[46]  Jinshui Wu,et al.  Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure , 1990 .

[47]  P. Brookes,et al.  Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil , 1985 .

[48]  David S. Powlson,et al.  Measurement of microbial biomass phosphorus in soil , 1982 .