A sequential design for maximizing the probability of a favourable response

Consider the situation in which subjects arrive sequentially for a treatment and in which there are two distinct ways in which the treatment may fail. Treatments are given at different dosages, and the probabilities of the two failure types vary with dose. Assuming that decreasing the chances of one failure type increases the chances of the other, we say the failures oppose each other. Also assume that one failure type is primary in that, if it occurs, it censors the trial, so that observation of the secondary failure type is contingent on no failure of the primary type. We are interested in designs that provide information about the dose that maximizes the probability of success, i.e., the optimal dose, while treating very few subjects at dosages that have high risks of failure. Assuming that dosages belong to a discrete set, we show that a randomized version of the Polya urn scheme causes dose selection to be progressively biased so as to favour those doses that produce success with higher probability. Considerons la situation dans laquelle des sujets arrivent sequentiellement pour un traitement et dans laquelle il y a deux facons distinctes selon lesquelles le traitement peut echouer. Les traitements sont donnes e des dosages difterents, et les probabilite de deux types d'echecs varient avec la dose. Prenant pour acquis qu'en decroissant les chances d'un type d'echec on accroǐt les chances de l'autre, nous disons que les echecs s'opposent. Nous supposons aussi qu'un type d'echec est primaire, en ceci que s'il se produit, il censure l'essai, de telle maniere que l'observation du type secondaire est contigente au non-echec du type primaire. Nous sommes interesses par les plans qui donnent de l'information e propos de la dose qui maximize la probabilite de succes, c'est a dire la dose optimale, alors que l'on traite tres peu de sujets, a des dosages qui ont de hauts risques d'echec. Supposant que les dosages appartiennent a un ensemble discret, nous demontrons qu'une version rendue aleatoire du schema en urne de Polya a pour effet de rendre la selection des doses progressivement biaisee arm de favoriser les doses produisant le succes avec la plus haute probabilite.

[1]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[2]  S. Goodman,et al.  Some practical improvements in the continual reassessment method for phase I studies. , 1995, Statistics in medicine.

[3]  Nancy Flournoy,et al.  A Clinical Experiment in Bone Marrow Transplantation: Estimating a Percentage Point of a Quantal Response Curve , 1993 .

[4]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[5]  Nancy Flournoy,et al.  UP-AND-DOWN DESIGNS II: EXACT TREATMENT MOMENTS , 1995 .

[6]  J. L. Hall Maximum‐Likelihood Sequential Procedure for Estimation of Psychometric Functions , 1968 .

[7]  E. Gumbel Bivariate Logistic Distributions , 1961 .

[8]  Nancy Flournoy,et al.  An adaptive design for maximization of a contingent binary response , 1995 .

[9]  Zakkula Govindarajulu,et al.  Statistical Techniques in Bioassay , 1988 .

[10]  L. J. Wei,et al.  The Randomized Play-the-Winner Rule in Medical Trials , 1978 .

[11]  L. J. Wei,et al.  Statistical Inference with Data-Dependent Treatment Allocation Rules , 1990 .

[12]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[13]  Bivariate distributions generated from Po´lya-Eggenberger Urn models , 1990 .

[14]  Nancy Flournoy,et al.  Up-and-down designs. I. Stationary treatment distributions , 1995 .

[15]  R. H. Myers,et al.  Optimal Designs for Bivariate Logistic Regression , 1996 .

[16]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[17]  B E Storer,et al.  Design and analysis of phase I clinical trials. , 1989, Biometrics.

[18]  William F. Rosenberger,et al.  Asymptotic normality of maximum likelihood estimators from multiparameter response-driven designs , 1997 .

[19]  S. Chevret,et al.  Methods for dose finding studies in cancer clinical trials: a review and results of a Monte Carlo study. , 1991, Statistics in medicine.

[20]  Norman L. Johnson,et al.  Urn models and their application , 1977 .

[21]  C. F. Wu,et al.  Efficient Sequential Designs with Binary Data , 1985 .

[22]  William F. Rosenberger,et al.  Toxicity in sequential dose-response experiments , 1995 .

[23]  J. Sacks Asymptotic Distribution of Stochastic Approximation Procedures , 1958 .

[24]  L. J. Wei,et al.  The Generalized Polya's Urn Design for Sequential Medical Trials , 1979 .

[25]  G. Pólya,et al.  Über die Statistik verketteter Vorgänge , 1923 .

[26]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[27]  S Chevret,et al.  The continual reassessment method in cancer phase I clinical trials: a simulation study. , 1993, Statistics in medicine.

[28]  Masaaki Sibuya,et al.  Negative multinomial distribution , 1964 .

[29]  S. D. Durham,et al.  Randomized Play-the-Leader Rules for Sequential Sampling from Two Populations , 1990, Probability in the engineering and informational sciences (Print).

[30]  J O'Quigley,et al.  Continual reassessment method: a practical design for phase 1 clinical trials in cancer. , 1990, Biometrics.

[31]  S. Durham,et al.  A random walk rule for phase I clinical trials. , 1997, Biometrics.

[32]  Nancy Flournoy,et al.  Random Walks for Quantile Estimation , 1994 .