Open quantum random walks: Bistability on pure states and ballistically induced diffusion

Open quantum random walks (OQRWs) deal with quantum random motions on a line for systems with internal and orbital degrees of freedom. The internal system behaves as a quantum random gyroscope coding for the direction of the orbital moves. We reveal the existence of a transition, depending on OQRW moduli, in the internal system behaviors from simple oscillations to random flips between two unstable pure states. This induces a transition in the orbital motions from the usual diffusion to ballistically induced diffusion with a large mean free path and large effective diffusion constant at large times. We also show that mixed states of the internal system are converted into random pure states during the process. We touch upon possible experimental realizations.

[1]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[2]  F. Petruccione,et al.  Open Quantum Random Walks , 2012, 1402.3253.

[3]  Viacheslav P. Belavkin,et al.  A posterior Schrödinger equation for continuous nondemolition measurement , 1990 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  Anthony J Leggett,et al.  Influence of Dissipation on Quantum Tunneling in Macroscopic Systems , 1981 .

[6]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[7]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[8]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[9]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[10]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[11]  H. Carmichael An open systems approach to quantum optics , 1993 .

[12]  V. P. Belavkin,et al.  Quantum continual measurements and a posteriori collapse on CCR , 1992 .

[13]  P. Sen,et al.  Quantum random walk: Effect of quenching , 2012, 1208.0424.

[14]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[15]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[16]  Denis Bernard,et al.  Convergence of repeated quantum nondemolition measurements and wave-function collapse , 2011, 1106.4953.

[17]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[18]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[19]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  J. Jacod,et al.  L'essentiel en théorie des probabilités , 2003 .

[22]  M. Bauer,et al.  The open quantum Brownian motions , 2013, 1312.1600.

[23]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[24]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[25]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[26]  Alberto Barchielli,et al.  Measurement theory and stochastic differential equations in quantum mechanics. , 1986, Physical review. A, General physics.

[27]  J. Fröhlich,et al.  Diffusion of a Massive Quantum Particle Coupled to a Quasi-Free Thermal Medium , 2009, 0906.5178.

[28]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[29]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[30]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .