Searching for binary coalescences with inspiral templates: detection and parameter estimation

There has been remarkable progress in numerical relativity recently. This has led to the generation of gravitational waveform signals covering what has been traditionally termed the three phases of the coalescence of a compact binary—the inspiral, merger and ringdown. In this paper, we examine the usefulness of inspiral only templates for both detection and parameter estimation of the full coalescence waveforms generated by numerical relativity simulations. To this end, we deploy as search templates waveforms based on the effective one-body waveforms terminated at the light-ring as well as standard post-Newtonian waveforms. We find that both of these are good for detection of signals. Parameter estimation is good at low masses, but degrades as the mass of the binary system increases.

[1]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[2]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[3]  P. Marronetti,et al.  Binary black hole mergers: Large kicks for generic spin orientations , 2007, gr-qc/0703075.

[4]  et al,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.

[5]  T. Damour,et al.  Faithful Effective-One-Body waveforms of equal-mass coalescing black-hole binaries , 2007, 0712.3003.

[6]  T. Damour,et al.  Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries , 2008, 0803.3162.

[7]  Improved filters for gravitational waves from inspiraling compact binaries , 1997, gr-qc/9708034.

[8]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[9]  B. Iyer,et al.  The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.

[10]  A. Buonanno,et al.  Inspiral, merger and ring-down of equal-mass black-hole binaries , 2006, gr-qc/0610122.

[11]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[12]  Frans Pretorius,et al.  Numerical relativity using a generalized harmonic decomposition , 2005 .

[13]  Harald P. Pfeiffer,et al.  Solving Einstein's equations with dual coordinate frames , 2006, gr-qc/0607056.

[14]  T. Cokelaer Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.

[15]  Ernst Nils Dorband,et al.  Spin Diagrams for Equal-Mass Black Hole Binaries with Aligned Spins , 2007, 0708.3999.

[16]  J. D. Brown,et al.  Evolving a Puncture Black Hole with Fixed Mesh Refinement , 2004, gr-qc/0403048.

[17]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[18]  B. S. Sathyaprakash,et al.  A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.

[19]  S. McWilliams,et al.  Toward faithful templates for non-spinning binary black holes using the effective-one-body approach , 2007, 0706.3732.

[20]  Sascha Husa,et al.  Calibration of moving puncture simulations , 2008 .

[21]  Matched filtering of numerical relativity templates of spinning binary black holes , 2007, 0705.3829.

[22]  Lawrence E. Kidder,et al.  High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants , 2008, 0804.4184.

[23]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[24]  F. Pretorius,et al.  Black hole mergers and unstable circular orbits , 2007, gr-qc/0702084.

[25]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[26]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[27]  P. Ajith,et al.  Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .

[28]  A. Sengupta,et al.  Geometric algorithm for efficient coincident detection of gravitational waves , 2008, 0804.4816.

[29]  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[30]  José A. González,et al.  Where post-Newtonian and numerical-relativity waveforms meet , 2007, 0706.1305.

[31]  Z. Etienne,et al.  Filling the holes: Evolving excised binary black hole initial data with puncture techniques , 2007, 0707.2083.

[32]  Frank Herrmann,et al.  Circularization and final spin in eccentric binary-black-hole inspirals , 2007, 0710.5167.

[33]  M. Campanelli,et al.  Accurate black hole evolutions by fourth-order numerical relativity , 2005 .

[34]  P. Marronetti,et al.  Final mass and spin of black-hole mergers , 2008, 0807.2985.

[35]  Dae-Il Choi,et al.  How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture , 2006 .

[36]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[37]  Binary black-hole evolutions of excision and puncture data , 2006, gr-qc/0606079.

[38]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[39]  B. Iyer,et al.  Erratum: Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order [Phys. Rev. D 65, 061501(R) (2002)] , 2005 .

[40]  Reducing false alarms in searches for gravitational waves from coalescing binary systems , 2007 .

[41]  José A. González,et al.  Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing , 2007, 0706.0740.

[42]  A. Rodriguez Reducing False Alarms in Searches for Gravitational Waves from Coalescing Binary Systems , 2008, 0802.1376.

[43]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[44]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[45]  B. Iyer,et al.  Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order , 2001, gr-qc/0105099.

[46]  Michael Boyle,et al.  High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions , 2007, 0710.0158.

[47]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007 .

[48]  T. Damour,et al.  Comparing effective-one-body gravitational waveforms to accurate numerical data , 2007, 0711.2628.

[49]  P. Marronetti,et al.  High-spin binary black hole mergers , 2007, 0709.2160.

[50]  Sascha Husa,et al.  Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case , 2007, 0712.3787.

[51]  C. Stivers Class , 2010 .