Terahertz laminated-structure polarizer with high extinction ratio and transmission power

A terahertz polarizer consisting of a laminated metal-slit array on a polymer film is presented. Here, the iterative design is efficiently performed with a mode-matching method; the proposed polarizer’s characteristics are shown to be superior to those of conventional polarizers. To verify the proposed design, a copper metal-slit array was fabricated on a cyclo-olefin polymer film by sputtering and punching. Measurements confirm a high extinction ratio, below −50 dB from 0.28 to 1.09 THz and below −40 dB from 0.2 to 1.98 THz, with a TM-mode transmission power that averages 76% from 0.2 to 1.95 THz.

[1]  Hideo Aoki,et al.  Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor , 2014, Science.

[2]  Masayuki Fujita,et al.  Capture of a terahertz wave in a photonic-crystal slab , 2014, Nature Photonics.

[3]  John S. Cetnar,et al.  High Fill-Factor Substrate-Based Wire-Grid Polarizers With High Extinction Ratios , 2014, IEEE Transactions on Terahertz Science and Technology.

[4]  E. Pickwell‐MacPherson,et al.  High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure. , 2014, Optics letters.

[5]  Minoru Fujii,et al.  Terahertz wire grid polarizer fabricated by imprinting porous silicon. , 2013, Optics letters.

[6]  M. Tani,et al.  Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing , 2013 .

[7]  Hongkyu Park,et al.  Advances in Polarizer Technology for Terahertz Frequency Applications , 2013 .

[8]  H. Aoki,et al.  Quantum Faraday and Kerr rotations in graphene , 2013, Nature Communications.

[9]  Markku Kuittinen,et al.  Fabrication of terahertz wire-grid polarizers. , 2012, Applied optics.

[10]  Yia-Chung Chang,et al.  An omni-directional mid-infrared tunable plasmonic polarization filter , 2012, Nanotechnology.

[11]  Jinghua Teng,et al.  Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure , 2012 .

[12]  John S. Cetnar,et al.  Extraordinary Optical Transmission and Extinction in a Terahertz Wire-Grid Polarizer , 2012 .

[13]  Christopher W. Berry,et al.  Broadband Terahertz Polarizing Beam Splitter on a Polymer Substrate , 2012 .

[14]  Dylan B. Fast,et al.  Wire-grid THz polarizers manufactured by laser micromachining of metal films on a polymer membrane , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[15]  Masanori Hangyo,et al.  Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology. , 2011, Optics letters.

[16]  Huaiwu Zhang,et al.  Terahertz transmission characteristics of double wire-grid polarizer on low-loss polyethylene substrate , 2011 .

[17]  Wei-Tao Liu,et al.  Double-grating polarizer for terahertz radiation with high extinction ratio. , 2010, Applied optics.

[18]  Mira Naftaly,et al.  Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. , 2009, Optics letters.

[19]  Itsunari Yamada,et al.  Terahertz wire-grid polarizers with micrometer-pitch Al gratings. , 2009, Optics letters.

[20]  Makoto Ando,et al.  Analysis and uniform design of a single-layer slotted waveguide array antenna with baffles , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[21]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[22]  L. Josefsson A waveguide transverse slot for array applications , 1993 .

[23]  W. G. Chambers,et al.  The far-infrared performance and application of free-standing grids wound from 5 μm diameter tungsten wire , 1979 .

[24]  H. Eom Electromagnetic Wave Theory for Boundary-Value Problems , 2004 .

[25]  R. Collin Field theory of guided waves , 1960 .