From seconds to months: an overview of multi-scale dynamics of mobile telephone calls

Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and “zoom out” towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.

[1]  M. Barthelemy,et al.  From mobile phone data to the spatial structure of cities , 2014, Scientific Reports.

[2]  Albert-László Barabási,et al.  Universal features of correlated bursty behaviour , 2011, Scientific Reports.

[3]  P. Holme Network dynamics of ongoing social relationships , 2003, cond-mat/0308544.

[4]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[5]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[6]  Rich Ling,et al.  Product Adoption Networks and Their Growth in a Large Mobile Phone Network , 2010, 2010 International Conference on Advances in Social Networks Analysis and Mining.

[7]  Erez Shmueli,et al.  openPDS: Protecting the Privacy of Metadata through SafeAnswers , 2014, PloS one.

[8]  Kwang-Il Goh,et al.  Burstiness and memory in complex systems , 2006 .

[9]  Esteban Moro Egido,et al.  The dynamical strength of social ties in information spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[11]  Sara B. Soderstrom,et al.  Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms , 2010 .

[12]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[13]  Meeyoung Cha,et al.  Modeling the Adoption of Innovations in the Presence of Geographic and Media Influences , 2011, PloS one.

[14]  Vincent D. Blondel,et al.  Bursts of Vertex Activation and Epidemics in Evolving Networks , 2013, PLoS Comput. Biol..

[15]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[16]  Alessandro Vespignani,et al.  Time varying networks and the weakness of strong ties , 2013, Scientific Reports.

[17]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Jari Saramäki,et al.  Effects of temporal correlations on cascades: Threshold models on temporal networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Jon Kleinberg,et al.  The link prediction problem for social networks , 2003, CIKM '03.

[20]  D. Gática-Pérez,et al.  Towards rich mobile phone datasets: Lausanne data collection campaign , 2010 .

[21]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[22]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[23]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[24]  A. Barabasi,et al.  Analysis of a large-scale weighted network of one-to-one human communication , 2007, physics/0702158.

[25]  Pavlin Mavrodiev,et al.  Social resilience in online communities: the autopsy of friendster , 2013, COSN '13.

[26]  Nicu Sebe,et al.  Friends don't lie: inferring personality traits from social network structure , 2012, UbiComp.

[27]  César A. Hidalgo,et al.  Unique in the Crowd: The privacy bounds of human mobility , 2013, Scientific Reports.

[28]  N. Eagle,et al.  Network Diversity and Economic Development , 2010, Science.

[29]  Jari Saramäki,et al.  Persistence of social signatures in human communication , 2012, Proceedings of the National Academy of Sciences.

[30]  Alex Pentland,et al.  Predicting Personality Using Novel Mobile Phone-Based Metrics , 2013, SBP.

[31]  Sougata Mukherjea,et al.  Social ties and their relevance to churn in mobile telecom networks , 2008, EDBT '08.

[32]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[33]  W. S. Robinson Ecological correlations and the behavior of individuals. , 1950, International journal of epidemiology.

[34]  Jari Saramäki,et al.  Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences , 2013, Proceedings of the National Academy of Sciences.

[35]  Jari Saramäki,et al.  Multiscale analysis of spreading in a large communication network , 2011, ArXiv.

[36]  Petter Holme,et al.  Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts , 2010, PLoS Comput. Biol..

[37]  Kimmo Kaski,et al.  Circadian pattern and burstiness in mobile phone communication , 2011, 1101.0377.

[38]  Matti Nelimarkka,et al.  Measuring social relations with multiple datasets , 2011, Int. J. Soc. Comput. Cyber Phys. Syst..

[39]  Etienne Huens,et al.  Geographical dispersal of mobile communication networks , 2008, 0802.2178.

[40]  Daniele Quercia,et al.  The personality of popular facebook users , 2012, CSCW.

[41]  Kimmo Kaski,et al.  Correlated Dynamics in Egocentric Communication Networks , 2012, PloS one.

[42]  C. Rodriguez-Sickert,et al.  The dynamics of a mobile phone network , 2007, 0712.4031.

[43]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[44]  Robin I. M. Dunbar Neocortex size as a constraint on group size in primates , 1992 .

[45]  Esteban Moro Egido,et al.  Time as a limited resource: Communication Strategy in Mobile Phone Networks , 2013, Soc. Networks.

[46]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[47]  G. Miritello Temporal Patterns of Communication in Social Networks , 2013 .

[48]  Ronald S. Burt,et al.  Decay functions , 2000, Soc. Networks.

[49]  Mason A. Porter,et al.  Estimating inter-event time distributions from finite observation periods in communication networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[51]  Jari Saramäki,et al.  Small But Slow World: How Network Topology and Burstiness Slow Down Spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Alex Pentland,et al.  Social fMRI: Investigating and shaping social mechanisms in the real world , 2011, Pervasive Mob. Comput..

[53]  Jürgen Kurths,et al.  Evidence for a bimodal distribution in human communication , 2010, Proceedings of the National Academy of Sciences.

[54]  Petter Holme,et al.  Predictability of population displacement after the 2010 Haiti earthquake , 2012, Proceedings of the National Academy of Sciences.

[55]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[56]  Piotr Sapiezynski,et al.  Measuring Large-Scale Social Networks with High Resolution , 2014, PloS one.

[57]  G. Madey,et al.  Uncovering individual and collective human dynamics from mobile phone records , 2007, 0710.2939.

[58]  János Kertész,et al.  Spreading dynamics on networks: the role of burstiness, topology and non-stationarity , 2014, 1404.2468.

[59]  Lada A. Adamic,et al.  Computational Social Science , 2009, Science.

[60]  Jari Saramäki,et al.  Effects of time window size and placement on the structure of an aggregated communication network , 2012, EPJ Data Science.

[61]  Manuel Cebrián,et al.  Limited communication capacity unveils strategies for human interaction , 2013, Scientific Reports.

[62]  Jon M. Kleinberg,et al.  Romantic partnerships and the dispersion of social ties: a network analysis of relationship status on facebook , 2013, CSCW.

[63]  A. Barabasi,et al.  Impact of non-Poissonian activity patterns on spreading processes. , 2006, Physical review letters.

[64]  de Montjoye Yves-Alexandre,et al.  openPDS system's architecture. , 2014 .

[65]  Stopczynski Arkadiusz,et al.  Sensible Data openPDS architecture. , 2014 .

[66]  F. Calabrese,et al.  Urban gravity: a model for inter-city telecommunication flows , 2009, 0905.0692.

[67]  Jari Saramäki,et al.  Temporal motifs in time-dependent networks , 2011, ArXiv.

[68]  Alessandro Vespignani,et al.  Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number , 2011, PloS one.

[69]  LuJiaheng,et al.  Big data challenge , 2013 .

[70]  Jon M. Kleinberg,et al.  Wherefore art thou R3579X? , 2011, Commun. ACM.

[71]  Petter Holme,et al.  Birth and death of links control disease spreading in empirical contact networks , 2013, Scientific Reports.

[72]  Kimmo Kaski,et al.  Circadian pattern and burstiness in human communication activity , 2011, ArXiv.

[73]  Adilson E. Motter,et al.  A Poissonian explanation for heavy tails in e-mail communication , 2008, Proceedings of the National Academy of Sciences.

[74]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[75]  Vincent D. Blondel,et al.  A survey of results on mobile phone datasets analysis , 2015, EPJ Data Science.

[76]  Esteban Moro,et al.  Impact of human activity patterns on the dynamics of information diffusion. , 2009, Physical review letters.