Proteomic Analysis of Cellular Systems

The large-scale identification and quantification of proteins is an important foundation of systems biology. Here we focus on the particularly powerful technology of mass spectrometry (MS)-based proteomics, with an emphasis on recent high-resolution and quantitative approaches. MS-based proteomics is used to characterize proteins in complex mixtures and it is now possible to quantify nearly all the proteins in human cell lines. Subcellular localization and protein turnover can also be addressed comprehensively. In affinity purifications, quantitative proteomics distinguishes specific interacting proteins from background binders. Thousands of phosphorylation sites as well as other post-translational modifications can readily be quantified in vivo, providing direct access to cellular information processing events. Underlying the recent success of the field are developments in computational proteomics, which now allow highly sophisticated and completely automatic analysis of raw MS data and streamlined bioinformatic and systems-level interpretation of the results.

[1]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[2]  R. Aebersold,et al.  Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans , 2009, Nature.

[3]  G. P. Smith,et al.  Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. , 1985, Science.

[4]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[5]  Anthony C. Bishop,et al.  Magic bullets for protein kinases. , 2001, Trends in cell biology.

[6]  Alexey I Nesvizhskii,et al.  Interpretation of Shotgun Proteomic Data , 2005, Molecular & Cellular Proteomics.

[7]  Tobias Straub,et al.  Combined use of RNAi and quantitative proteomics to study gene function in Drosophila. , 2008, Molecular cell.

[8]  Hyeong Jun An,et al.  Estimating the size of the human interactome , 2008, Proceedings of the National Academy of Sciences.

[9]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[10]  Tommy Nilsson,et al.  Organellar proteomics to create the cell map. , 2007, Current opinion in cell biology.

[11]  M. Mann,et al.  Global and site-specific quantitative phosphoproteomics: principles and applications. , 2009, Annual review of pharmacology and toxicology.

[12]  Emma Lundberg,et al.  Systematic Analysis of Protein Pools, Isoforms, and Modifications Affecting Turnover and Subcellular Localization , 2011, Molecular & Cellular Proteomics.

[13]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[14]  Yong-Bin Kim,et al.  ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry , 2007, Nucleic Acids Res..

[15]  Markus Brosch,et al.  Accurate and sensitive peptide identification with Mascot Percolator. , 2009, Journal of proteome research.

[16]  M. Mann,et al.  A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. , 2009, Genome research.

[17]  Juri Rappsilber,et al.  The Protein Composition of Mitotic Chromosomes Determined Using Multiclassifier Combinatorial Proteomics , 2010, Cell.

[18]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[19]  Ruedi Aebersold,et al.  Corrigendum: Identification of cross-linked peptides from large sequence databases , 2008 .

[20]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[21]  M. Karas,et al.  Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. , 1988, Analytical chemistry.

[22]  Ming Li,et al.  PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[23]  Gary D Bader,et al.  Analyzing yeast protein–protein interaction data obtained from different sources , 2002, Nature Biotechnology.

[24]  A. Bauch,et al.  An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells , 2006, Nature Methods.

[25]  D. Lauffenburger,et al.  Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[26]  G. Superti-Furga,et al.  Charting the molecular network of the drug target Bcr-Abl , 2009, Proceedings of the National Academy of Sciences.

[27]  Fred W. McLafferty,et al.  Top-down identification and characterization of biomolecules by mass spectrometry , 2008, Journal of the American Society for Mass Spectrometry.

[28]  Steven P. Gygi,et al.  Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics , 2010, Cell.

[29]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[30]  Jacob D. Jaffe,et al.  ZBED6, a Novel Transcription Factor Derived from a Domesticated DNA Transposon Regulates IGF2 Expression and Muscle Growth , 2009, PLoS biology.

[31]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[32]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[33]  P. Grandi,et al.  Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes , 2011, Nature Biotechnology.

[34]  Edwin Smith,et al.  The Language of Histone Crosstalk , 2010, Cell.

[35]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[36]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[37]  Florian Gnad,et al.  Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints , 2010, Cell.

[38]  M. Mann,et al.  Proteomic characterization of the human centrosome by protein correlation profiling , 2003, Nature.

[39]  Anthony K. L. Leung,et al.  Nucleolar proteome dynamics , 2005, Nature.

[40]  M. Mann,et al.  Mass Spectrometry-based Proteomics Using Q Exactive, a High-performance Benchtop Quadrupole Orbitrap Mass Spectrometer* , 2011, Molecular & Cellular Proteomics.

[41]  Matthias Mann,et al.  A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed* , 2009, Molecular & Cellular Proteomics.

[42]  Kathryn S Lilley,et al.  Taming the isobaric tagging elephant in the room in quantitative proteomics , 2011, Nature Methods.

[43]  Samie R Jaffrey,et al.  Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling , 2010, Nature Biotechnology.

[44]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[45]  P. Cramer,et al.  Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry , 2010, EMBO Journal.

[46]  M. Gorenstein,et al.  The detection, correlation, and comparison of peptide precursor and product ions from data independent LC‐MS with data dependant LC‐MS/MS , 2009, Proteomics.

[47]  Rod B. Watson,et al.  Localization of Organelle Proteins by Isotope Tagging (LOPIT)*S , 2004, Molecular & Cellular Proteomics.

[48]  Christine A. Miller,et al.  Efficient Fractionation and Improved Protein Identification by Peptide OFFGEL Electrophoresis*S , 2006, Molecular & Cellular Proteomics.

[49]  M. Mann,et al.  The Phosphotyrosine Interactome of the Insulin Receptor Family and Its Substrates IRS-1 and IRS-2*S , 2009, Molecular & Cellular Proteomics.

[50]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[51]  Reinout Raijmakers,et al.  Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics , 2009, Nature Protocols.

[52]  N. Grishin,et al.  Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. , 2006, Molecular cell.

[53]  Xiaohui S. Xie,et al.  A Mammalian Organelle Map by Protein Correlation Profiling , 2006, Cell.

[54]  N. Kelleher,et al.  Web and database software for identification of intact proteins using "top down" mass spectrometry. , 2003, Analytical chemistry.

[55]  J. Cox,et al.  Proteomics strategy for quantitative protein interaction profiling in cell extracts , 2009, Nature Methods.

[56]  M. Mann,et al.  Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. , 2008, Journal of proteome research.

[57]  G. Anderson,et al.  High-efficiency capillary isoelectric focusing of peptides. , 2000, Analytical chemistry.

[58]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[59]  N. Kelleher,et al.  Decoding protein modifications using top-down mass spectrometry , 2007, Nature Methods.

[60]  M. Gorenstein,et al.  Absolute Quantification of Proteins by LCMSE , 2006, Molecular & Cellular Proteomics.

[61]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[62]  B. Ma,et al.  De Novo Sequencing and Homology Searching‡‡* , 2011, Molecular & Cellular Proteomics.

[63]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[64]  Waltraud X. Schulze,et al.  A Novel Proteomic Screen for Peptide-Protein Interactions* , 2004, Journal of Biological Chemistry.

[65]  Bernhard Kuster,et al.  Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors , 2007, Nature Biotechnology.

[66]  Henry H. N. Lam,et al.  A database of mass spectrometric assays for the yeast proteome , 2008, Nature Methods.

[67]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[68]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[69]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[70]  M. Mann,et al.  The abc's (and xyz's) of peptide sequencing , 2004, Nature Reviews Molecular Cell Biology.

[71]  Steven P. Gygi,et al.  Large-scale phosphorylation analysis of mouse liver , 2007, Proceedings of the National Academy of Sciences.

[72]  Matthias Mann,et al.  Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4 , 2007, Cell.

[73]  Richard M Caprioli,et al.  Tissue Profiling by Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[74]  M. Wilm,et al.  Error-tolerant identification of peptides in sequence databases by peptide sequence tags. , 1994, Analytical chemistry.

[75]  Richard D. LeDuc,et al.  Mapping Intact Protein Isoforms in Discovery Mode Using Top Down Proteomics , 2011, Nature.

[76]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[77]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[78]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[79]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[80]  P. Schultz,et al.  Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[81]  D. Chan,et al.  Analysis of the Human Endogenous Coregulator Complexome , 2011, Cell.

[82]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[83]  Andrew Keller,et al.  Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline. , 2011, Methods in molecular biology.

[84]  M. Mann,et al.  More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. , 2011, Journal of proteome research.

[85]  F. Boisvert,et al.  A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage , 2009, Molecular & Cellular Proteomics.

[86]  Matthias Mann,et al.  The mitochondrial contact site complex, a determinant of mitochondrial architecture , 2011, The EMBO journal.

[87]  J. Rappsilber The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes , 2011, Journal of structural biology.

[88]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[89]  M. Mann,et al.  Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation* , 2011, Molecular & Cellular Proteomics.

[90]  M. Mann,et al.  System-wide Perturbation Analysis with Nearly Complete Coverage of the Yeast Proteome by Single-shot Ultra HPLC Runs on a Bench Top Orbitrap* , 2011, Molecular & Cellular Proteomics.

[91]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[92]  Patrick G. A. Pedrioli,et al.  Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast , 2010, Science Signaling.

[93]  Martin Zeller,et al.  SLoMo: automated site localization of modifications from ETD/ECD mass spectra. , 2009, Journal of proteome research.

[94]  M. Mann,et al.  Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins* , 2012, Molecular & Cellular Proteomics.

[95]  D R Mani,et al.  iTRAQ Labeling is Superior to mTRAQ for Quantitative Global Proteomics and Phosphoproteomics* , 2011, Molecular & Cellular Proteomics.

[96]  M. Mann,et al.  Triple SILAC to Determine Stimulus Specific Interactions in the Wnt Pathway , 2011, Journal of proteome research.

[97]  Shu-Hui Chen,et al.  Stable-isotope dimethyl labeling for quantitative proteomics. , 2003, Analytical chemistry.

[98]  A. Makarov,et al.  The Orbitrap: a new mass spectrometer. , 2005, Journal of mass spectrometry : JMS.

[99]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[100]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[101]  Mikhail M Savitski,et al.  ModifiComb, a New Proteomic Tool for Mapping Substoichiometric Post-translational Modifications, Finding Novel Types of Modifications, and Fingerprinting Complex Protein Mixtures* , 2006, Molecular & Cellular Proteomics.

[102]  M. Mann,et al.  PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites , 2007, Genome Biology.

[103]  Matthias Mann,et al.  Bioinformatics analysis of mass spectrometry‐based proteomics data sets , 2009, FEBS letters.

[104]  A. Heck,et al.  The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells , 2011, Molecular systems biology.

[105]  M. Mann,et al.  Defining the transcriptome and proteome in three functionally different human cell lines , 2010, Molecular systems biology.

[106]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[107]  M. Mann,et al.  On the Proper Use of Mass Accuracy in Proteomics* , 2007, Molecular & Cellular Proteomics.

[108]  R. Aebersold,et al.  Advances in proteomic workflows for systems biology. , 2007, Current opinion in biotechnology.

[109]  Kristina Schwamborn,et al.  Molecular imaging by mass spectrometry — looking beyond classical histology , 2010, Nature Reviews Cancer.

[110]  J. Yates,et al.  Proteomics of organelles and large cellular structures , 2005, Nature Reviews Molecular Cell Biology.

[111]  Henry H. N. Lam,et al.  Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. , 2008, Physiological genomics.

[112]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[113]  Martin Kircher,et al.  Deep proteome and transcriptome mapping of a human cancer cell line , 2011, Molecular systems biology.

[114]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[115]  M. Mann,et al.  Phosphotyrosine interactome of the ErbB-receptor kinase family , 2005, Molecular systems biology.

[116]  M. Mann,et al.  Software Lock Mass by Two-Dimensional Minimization of Peptide Mass Errors , 2011, Journal of the American Society for Mass Spectrometry.

[117]  P. Bork,et al.  Impact of Genome Reduction on Bacterial Metabolism and Its Regulation , 2009, Science.

[118]  M. Mann,et al.  Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes* , 2011, Molecular & Cellular Proteomics.

[119]  Mark S Friedrichs,et al.  Changes in the protein expression of yeast as a function of carbon source. , 2003, Journal of proteome research.

[120]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[121]  Ruedi Aebersold,et al.  Quantitative interaction proteomics using mass spectrometry , 2009, Nature Methods.

[122]  Alexey I Nesvizhskii,et al.  Analysis and validation of proteomic data generated by tandem mass spectrometry , 2007, Nature Methods.

[123]  C. Marshall,et al.  Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation , 1995, Cell.

[124]  Ruedi Aebersold,et al.  Identification of cross-linked peptides from large sequence databases , 2008, Nature Methods.

[125]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[126]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[127]  Luis Mendoza,et al.  PASSEL: The PeptideAtlas SRMexperiment library , 2012, Proteomics.

[128]  M. Mann,et al.  Identifying and quantifying in vivo methylation sites by heavy methyl SILAC , 2004, Nature Methods.

[129]  Ruedi Aebersold,et al.  High-throughput generation of selected reaction-monitoring assays for proteins and proteomes , 2010, Nature Methods.

[130]  R. Aebersold,et al.  Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics , 2010, Molecular & Cellular Proteomics.

[131]  Ishtiaq Rehman,et al.  iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly". , 2009, Journal of proteome research.

[132]  Hiroyuki Kaji,et al.  Proteomics Reveals N-Linked Glycoprotein Diversity in Caenorhabditis elegans and Suggests an Atypical Translocation Mechanism for Integral Membrane Proteins*S , 2007, Molecular & Cellular Proteomics.

[133]  Albert J R Heck,et al.  Trends in ultrasensitive proteomics. , 2012, Current opinion in chemical biology.

[134]  D. Creasy,et al.  Error tolerant searching of uninterpreted tandem mass spectrometry data , 2002, Proteomics.

[135]  M. Mann,et al.  Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. , 2010, Journal of proteome research.

[136]  E. Petricoin,et al.  Dynamic Profiling of the Post-translational Modifications and Interaction Partners of Epidermal Growth Factor Receptor Signaling after Stimulation by Epidermal Growth Factor Using Extended Range Proteomic Analysis (ERPA)*S , 2006, Molecular & Cellular Proteomics.

[137]  Yingming Zhao,et al.  Modification‐specific proteomics: Strategies for characterization of post‐translational modifications using enrichment techniques , 2009, Proteomics.

[138]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[139]  Michelle S. Scott,et al.  A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells* , 2011, Molecular & Cellular Proteomics.

[140]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[141]  M. Mann,et al.  Large-scale phosphosite quantification in tissues by a spike-in SILAC method , 2011, Nature Methods.

[142]  B. Kuster,et al.  Confident Phosphorylation Site Localization Using the Mascot Delta Score , 2010, Molecular & Cellular Proteomics.

[143]  Edward L. Huttlin,et al.  A large-scale method to measure absolute protein phosphorylation stoichiometries , 2011, Nature Methods.

[144]  R. Aebersold,et al.  Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS)* , 2012, Molecular & Cellular Proteomics.

[145]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[146]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[147]  Lukas N. Mueller,et al.  An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. , 2008, Journal of proteome research.

[148]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[149]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[150]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[151]  Matthias Mann,et al.  Mass spectrometry–based proteomics in cell biology , 2010, The Journal of cell biology.

[152]  T. Köcher,et al.  Universal and confident phosphorylation site localization using phosphoRS. , 2011, Journal of proteome research.

[153]  J. Shabanowitz,et al.  Phosphoproteome Analysis of Capacitated Human Sperm , 2003, The Journal of Biological Chemistry.

[154]  Ruedi Aebersold,et al.  The study of macromolecular complexes by quantitative proteomics , 2003, Nature Genetics.

[155]  R. Aebersold,et al.  Selected reaction monitoring for quantitative proteomics: a tutorial , 2008, Molecular systems biology.

[156]  Matthias Mann,et al.  Unbiased RNA–protein interaction screen by quantitative proteomics , 2009, Proceedings of the National Academy of Sciences.

[157]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[158]  Matthias Mann,et al.  Innovations: Functional and quantitative proteomics using SILAC , 2006, Nature Reviews Molecular Cell Biology.

[159]  J. Listgarten,et al.  Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[160]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[161]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[162]  R. Iyengar,et al.  Signaling Networks The Origins of Cellular Multitasking , 2000, Cell.

[163]  M. Mann,et al.  Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics , 2004, Nature Biotechnology.

[164]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[165]  T. Hunter The age of crosstalk: phosphorylation, ubiquitination, and beyond. , 2007, Molecular cell.

[166]  K. Biemann Four decades of structure determination by mass spectrometry: From alkaloids to heparin , 2002, Journal of the American Society for Mass Spectrometry.

[167]  R. Durbin,et al.  Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins , 2010, Science.

[168]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[169]  Julian Mintseris,et al.  A Protein Complex Network of Drosophila melanogaster , 2011, Cell.

[170]  Rovshan G Sadygov,et al.  Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book , 2004, Nature Methods.

[171]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[172]  P. Righetti,et al.  A turning point in proteome analysis: Sample prefractionation via multicompartment electrolyzers with isoelectric membranes , 2000, Electrophoresis.

[173]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[174]  E. Lundberg,et al.  A Genecentric Human Protein Atlas for Expression Profiles Based on Antibodies* , 2008, Molecular & Cellular Proteomics.

[175]  M. Mann,et al.  A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth , 2010, EMBO reports.

[176]  Karl Mechtler,et al.  BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals , 2008, Nature Methods.

[177]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[178]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[179]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[180]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[181]  Jyoti S Choudhary,et al.  Phosphoproteomic Analysis of the Mouse Brain Cytosol Reveals a Predominance of Protein Phosphorylation in Regions of Intrinsic Sequence Disorder*S , 2008, Molecular & Cellular Proteomics.

[182]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[183]  Zhaohui S. Qin,et al.  A Global Protein Kinase and Phosphatase Interaction Network in Yeast , 2010, Science.

[184]  Pavel A. Pevzner,et al.  De Novo Peptide Sequencing via Tandem Mass Spectrometry , 1999, J. Comput. Biol..

[185]  Emma Lundberg,et al.  A Protein Epitope Signature Tag (PrEST) Library Allows SILAC-based Absolute Quantification and Multiplexed Determination of Protein Copy Numbers in Cell Lines* , 2011, Molecular & Cellular Proteomics.

[186]  O. Jensen Interpreting the protein language using proteomics , 2006, Nature Reviews Molecular Cell Biology.

[187]  Nick V Grishin,et al.  Lysine Acetylation Is a Highly Abundant and Evolutionarily Conserved Modification in Escherichia Coli*S , 2009, Molecular & Cellular Proteomics.

[188]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[189]  G. Superti-Furga,et al.  Target profiling of small molecules by chemical proteomics. , 2009, Nature chemical biology.