Critical percolation and conformal invariance

Many 2D critical lattice models are believed to have conformally invariant scaling limits. This belief allowed physicists to predict (unrigorously) many of their properties, including exact values ...

[1]  H. Kesten Scaling relations for 2D-percolation , 1987 .

[2]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[3]  H. Kesten Percolation theory for mathematicians , 1982 .

[4]  Wouter Kager,et al.  A Guide to Stochastic Löwner Evolution and Its Applications , 2003 .

[5]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[6]  Karl Löwner Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I , 1923 .

[7]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[8]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[9]  John Cardy Critical percolation in finite geometries , 1992 .

[10]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[11]  Yvan Saint-Aubin,et al.  Conformal invariance in two-dimensional percolation , 1994 .

[12]  Path Crossing Exponents and the External Perimeter in 2D Percolation , 1999, cond-mat/9901018.

[13]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[14]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[15]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[16]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.