1. D. Austin, A geometric proof of the Lebesgue differentiation theorem, Proc. Amer. Math. Soc. 16 (1965) 220–221. 2. R. P. Boas, A Primer of Real Functions, 3rd ed., Mathematical Association of America, Washington, D.C., 1981. 3. C. Goffman, Real Functions, Holt, Rinehart and Winston, New York, 1961. 4. H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives, Paris, 1904; 2nd ed., Gauthier-Villars, Paris, 1928. 5. F. Riesz, Sur l’existence de la dérivée des fonctions monotones et sur quelques problèmes qui s’y rattachent, Acta Litt. Sci. Szeged 5 (1932) 208–221. 6. H. L. Royden, Real Analysis, 3rd ed., Macmillan, New York, 1988. 7. L. A. Rubel, Differentiability of monotonic functions, Colloq. Math. 10 (1963) 277–279. 8. B. S. Thomson, Real Functions, Lecture Notes in Mathematics, no. 1170, Springer-Verlag, Berlin, 1985.
[1]
Nikita Sidorov,et al.
Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems
,
1998
.
[2]
Donald Austin.
A geometric proof of the Lebesgue differentiation theorem
,
1965
.
[3]
A. Rényi.
Representations for real numbers and their ergodic properties
,
1957
.
[4]
Ralph P. Boas,et al.
A Primer of Real Functions
,
1961,
The Mathematical Gazette.
[5]
Nikita Sidorov,et al.
UNIQUE REPRESENTATIONS OF REAL NUMBERS IN NON-INTEGER BASES
,
2001
.
[6]
L. A. Rubel.
Differentiability of monotonic functions
,
1963
.
[7]
W. Parry.
On theβ-expansions of real numbers
,
1960
.