N-Body Growth of a Bahcall-Wolf Cusp around a Black Hole

We present a clear N-body realization of the growth of a Bahcall-Wolf f ∝ E1/4 (ρ ∝ r-7/4) density cusp around a massive object ("black hole") at the center of a stellar system. Our N-body algorithm incorporates a novel implementation of the Mikkola-Aarseth chain regularization to handle close interactions between star and black hole particles. Forces outside the chain were integrated on a GRAPE-6A/8 special-purpose computer with particle numbers up to N = 0.25 × 106. We compare our N-body results with predictions of the isotropic Fokker-Planck equation and verify that the time dependence of the density (both configuration and phase-space) predicted by the Fokker-Planck equation is well reproduced by the N-body algorithm. Our results highlight the usefulness of direct N-body techniques for simulating the dynamical evolution of galactic nuclei containing supermassive black holes.

[1]  E. Stiefel,et al.  Perturbation theory of Kepler motion based on spinor regularization. , 1965 .

[2]  J. Makino Postcollapse Evolution of Globular Clusters , 1996, astro-ph/9608160.

[3]  P. Young Numerical models of star clusters with a central black hole. I - Adiabatic models. , 1980 .

[4]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[5]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[6]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[7]  Junichiro Makino,et al.  Parameters of core collapse , 2003 .

[8]  S. Shapiro,et al.  The distribution of stars around a massive black hole , 1976, Nature.

[9]  S. Aarseth,et al.  A chain regularization method for the few-body problem , 1989 .

[10]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[11]  Sverre J. Aarseth,et al.  Gravitational N-Body Simulations , 2003 .

[12]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[13]  Eyal Maoz A fluctuation–dissipation approach to dynamical friction in non-homogeneous backgrounds , 1993 .

[14]  S. L. Shapiro,et al.  Star clusters containing massive, central black holes. III - Evolution calculations , 1979 .

[15]  D. Merritt,et al.  NonParametric Estimation of Density Profiles , 1994 .

[16]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[17]  Seppo Mikkola,et al.  An implementation ofN-body chain regularization , 1993 .

[18]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[19]  H. Cohn,et al.  Late core collapse in star clusters and the gravothermal instability , 1980 .

[20]  D. Merritt,et al.  Brownian Motion of a Massive Binary , 2000, astro-ph/0012264.

[21]  Caltech,et al.  Long-Term Evolution of Massive Black Hole Binaries , 2002, astro-ph/0212459.

[22]  David Merritt,et al.  Systolic and Hyper-Systolic Algorithms for the Gravitational N-Body Problem, with an Application to Brownian Motion , 2001, ArXiv.

[23]  P. Peebles Gravitational collapse and related phenomena from an empirical point of view, or, Black holes are where you find them , 1972 .