Modellierung reaktiver Prozesse auf Siliziumkarbid-Oberflächen in verdünnten Nichtgleichgewichts-Luftströmungen

Drei Ansatze zur Berechnung der Wechselwirkungen zwischen Luft im thermischen und chemischen Nichtgleichgewicht und Siliziumkarbid bzw. Siliziumdioxidoberflachen werden vorgestellt und diskutiert. Siliziumdioxid ist ein Oxidationsprodukt der Oxidation von Siliziumkarbid durch Sauerstoff und kann auf der Oberflache angelagert werden. Dort wirkt es als Diffusionsbarriere und verzogert damit das Fortschreiten der Oxidation. Abhangig vom Gasdruck bildet sich bei hohen Temperaturen verstarkt gasformiges Siliziummonoxid. In Kombination mit Hochenthalpiestromungen im chemischen Nichtgleichgewicht hat der Abbau des Siliziumdioxid eine um Grosenordnungen beschleunigte Oberflachenerosion in Verbindung mit einer Oberflachentemperaturerhohung von mehreren 100 K zur Folge. Die Verbindung katalytischer Prozesse mit Reaktionen zu Bildung und Abbau von Siliziumdioxid bildet ein Reaktionsgleichungssystem aus 110 einzelnen Reaktionsschritten und ermoglicht es, den Gaszustand an der Oberflache, die Erosion sowie die Temperatur zu berechnen. Durch Kopplung mit dem im Rahmen des Sonderforschungsbereichs 259 "Hochtemperaturprobleme ruckkehrfahiger Raumtransportsysteme" entwickelten Navier-Stokes Verfahren URANUS, das Luftstromungen im thermochemischen Nichtgleichgewicht genau und effizient berechnen kann, ist es moglich, die Oberflachenbelastung eines Raumfahrzeugs, dessen Hitzeschutzsystem auf Siliziumkarbid oder Siliziumdioxid basiert, bei der Ruckkehr zur Erde zu berechnen. Eine einheitliche Schnittstelle fur die reaktiven Oberflachenmodelle bildet die kinetische Randflussbehandlung. Diese gestattet es, die Gultigkeit des Simulationsverfahrens in den Ubergangsbereich zwischen Kontinuumsstromung und freier Molekularbewegung auszuweiten, so dass Belastungen der Luvseite eines Ruckkehrfahrzeugs bis in etwa 100 km Hohe vorhergesagt werden konnen. Demonstriert wird dies am Beispiel des US-Shuttle Orbiters sowie des experimentellen Wiedereintrittsfahrzeugs MIRKA. Three different approaches have been developed for the modelling of the interactions between air in thermal and chemical nonequilibrium and surfaces. The models for silicon carbide and silicon dioxide will be explained and discussed in detail. Silicon dioxide is one of the reaction products formed between oxygen and silicon carbide. The accumulation of silicon dioxide may form a surface layer acting as a diffusion barrier which reduces further oxidation. With decreasing pressure and increasing temperature, the formation probability of gaseous silicon monoxide increases. In high enthalpy flows in thermochemical nonequilibrium the decomposition of the silicon dioxide layer leads to an increase of erosion rate by orders of magnitude combined with a rise of surface temperature by several 100 K. Taking catalytic processes as well as formation and decomposition of silicon dioxide into account, a surface reaction scheme arises which consists of 110 elementary reaction steps. Hence, gas state, erosion rate as well as temperature can be computed. The surface reaction scheme is coupled with the advanced nonequilibrium Navier-Stokes Code URANUS (Upwind Relaxation Algorithm for Nonequilibrium Flows of the University of Stuttgart) which was developed within the collaborative research center 259 "High Temperature Problems of Re-Entry Vehicles". The URANUS code allows for an accurate and efficient computation of air flows in thermochemical nonequilibrium. By coupling the gas-surface interaction models with URANUS, the thermal and mechanical loads of thermal protection systems based on silicon carbide or on silicon dioxide can be simulated. A common interface to all surface models is realized by the gas-kinetic flux spitting at the surface. The flux based boundary conditions allow for temperature and velocity slip at the surface hereby extending the validity of the code into the transition regime. Hence, surface loads at the windward side of a re-entry vehicle can be determined up to an altitude of approximately 100 km. The abilities of the surface models are demonstrated for the re-entry of the US-Space Shuttle Orbiter as well as for the experimental MIRKA vehicle.

[1]  Lewis,et al.  Many-body nature of the Meyer-Neldel compensation law for diffusion. , 1995, Physical review letters.

[2]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[3]  A. B. Carlson,et al.  Implementation of a vibrationally linked chemical reaction model for DSMC , 1994 .

[4]  G. Pacchioni,et al.  Ab initio formation energies of point defects in pure and Ge-doped SiO 2 , 1997 .

[5]  Marc J. Assael,et al.  Higher-order approximation to the thermal conductivity of monatomic gas mixtures , 1980 .

[6]  M. Fertig,et al.  Detailed Computation of the Aerothermodynamic Loads of the Mirka Capsule , 1999 .

[7]  H. A. Schaeffer Oxygen and silicon diffusion-controlled processes in vitreous silica , 1980 .

[8]  P. Nozières,et al.  A simple stochastic description of desorption rates , 1976 .

[9]  Michael R. Melloch,et al.  Effect of substrate orientation and crystal anisotropy on the thermally oxidized SiO2/SiC interface , 1996 .

[10]  V. Zhdanov,et al.  Arrhenius parameters for rate processes on solid surfaces , 1991 .

[11]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[12]  D. Heermann Computer Simulation Methods in Theoretical Physics , 1986 .

[13]  H. Kreuzer Thermal desorption kinetics , 1992 .

[14]  S. Nutt,et al.  Interface structures in beta-silicon carbide thin films , 1987 .

[15]  The role of nitrogen-related defects in high-k dielectric oxides: Density-functional studies , 2004, cond-mat/0410088.

[16]  J. Linnett,et al.  Recombination of atoms at surfaces. Part 6.—Recombination of oxygen atoms on silica from 20°C to 600°C , 1959 .

[17]  Monika Auweter-Kurtz,et al.  Modelling of Reactive Processes at SiC Surfaces in Rarefied Nonequilibrium Airflows , 2002 .

[18]  Monika Auweter-Kurtz,et al.  Determination of Recombination Coefficients and Spectral Emissivity of Thermal Protection Materials , 2004 .

[19]  D. Emin Phonon-Assisted Jump Rate in Noncrystalline Solids , 1974 .

[20]  E. Jumper,et al.  Model for Oxygen Recombination on Reaction-Cured Glass , 1994 .

[21]  Markus Fertig,et al.  Upwind Relaxation Algorithm for Re-entry Nonequilibrium Flows , 2000 .

[22]  D. E. Rosner,et al.  High-temperature kinetics of the oxidation and nitridation of pyrolytic silicon carbide in dissociated gases , 1970 .

[23]  J. Linnett,et al.  Recombination of atoms at surfaces. Part 5.—Oxygen atoms at oxide surfaces , 1959 .

[24]  D. Baganoff,et al.  Kinetic Flux-Vector Splitting for the Navier-Stokes Equations , 1997 .

[25]  C. Wagner,et al.  Passivity during the Oxidation of Silicon at Elevated Temperatures , 1958 .

[26]  A. Eckel,et al.  Oxidation of Continuous Carbon Fibers within a Silicon Carbide Matrix under Stressed and Unstressed Conditions , 2000 .

[27]  T. Uda,et al.  Desorption of SiO molecule from the Si(100) surface , 2001 .

[28]  David Stewart,et al.  Determination of surface catalytic efficiency for thermal protection materials - Room temperature to their upper use limit , 1996 .

[29]  C. Radtke,et al.  Limiting step involved in the thermal growth of silicon oxide films on silicon carbide. , 2002, Physical review letters.

[30]  A. L. Crosbie,et al.  Catalytic Recombination of Nitrogen and Oxygen on High-Temperature Reusable Surface Insulation , 1981 .

[31]  R. Brokaw,et al.  Approximate Formulas for the Viscosity and Thermal Conductivity of Gas Mixtures , 1958 .

[32]  Kern,et al.  Dynamics of surface migration in the weak corrugation regime , 2000, Physical review letters.

[33]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[34]  Graeme A. Bird,et al.  Breakdown of translational and rotational equilibrium in gaseous expansions , 1970 .

[35]  Guy Cernogora,et al.  Atomic oxygen recombination on fused silica: modelling and comparison to low-temperature experiments (300 K)* , 2000 .

[36]  D. Hamann Diffusion of Atomic Oxygen in SiO 2 , 1998 .

[37]  S. Pantelides,et al.  Atomic-scale dynamics of the formation and dissolution of carbon clusters in SiO(2). , 2001, Physical review letters.

[38]  C. Ferreira,et al.  Surface kinetics of N and O atoms in discharges , 1996 .

[39]  K. Saraswat,et al.  Thermal nitridation of Si and SiO2for VLSI , 1985, IEEE Transactions on Electron Devices.

[40]  T. Marshall Surface Recombination of Nitrogen Atoms upon Quartz , 1962 .

[41]  T. Åkermark Molecular or Atomic Oxygen as the Transported Species in Oxidation of Silicon , 2000 .

[42]  S. Suhai,et al.  Theoretical investigation of carbon defects and diffusion in α-quartz , 2001 .

[43]  E. Rosencher,et al.  An 18O study of the thermal oxidation of silicon in oxygen , 1979 .

[44]  L. S. Darken,et al.  ENHANCEMENT OF DIFFUSION-LIMITED RATES OF VAPORIZATION OF METALS , 1963 .

[45]  J. Cawley,et al.  Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites , 1999 .

[46]  Claudio Bruno,et al.  Material-dependent catalytic recombination modeling for hypersonic flows , 1993 .

[47]  Arthur H. Heuer,et al.  Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and Their Application to High‐Temperature Decomposition and Oxidation , 1990 .

[48]  U. Leuthäusser Kinetic theory of desorption: Energy and angular distributions , 1983 .

[49]  J. Marschall,et al.  Thermochemical ablation model for TPS materials with multiple surface constituents , 1994 .

[50]  L. Feldman,et al.  Characterization and modeling of the nitrogen passivation of interface traps in SiO2/4H–SiC , 2003 .

[51]  Georg Herdrich,et al.  Behaviour of reusable heat shield materials unter re-entry conditions , 2005 .

[52]  Eric J. Jumper,et al.  Model for oxygen recombination on silicon-dioxide surfaces , 1991 .

[53]  Wagner,et al.  Kinetic model for desorption of hydrogen from amorphous hydrogenated silicon. , 1990, Physical review. B, Condensed matter.

[54]  G. D. Billing,et al.  Eley-Rideal and Langmuir-Hinshelwood Recombination Coefficients for Oxygen on Silica Surfaces , 1999 .

[55]  Graham V. Candler,et al.  Predicting failure of the continuum fluid equations in transitional hypersonic flows , 1994 .

[56]  Ronald J. Willey,et al.  Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation , 1993 .

[57]  C. Fung,et al.  Thermal oxidation of 3C silicon carbide single‐crystal layers on silicon , 1984 .

[58]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[59]  W. J. Choyke,et al.  Comparative oxidation studies of SiC(0001̄) and SiC(0001) surfaces , 1986 .

[60]  P. Dickens,et al.  Recombination of oxygen atoms on oxide surfaces. Part 1.—Activation energies of recombination , 1964 .

[61]  M. Czerniak,et al.  Thermal and chemical approaches for oxygen catalytic recombination evaluation on ceramic materials at high temperature , 1997 .

[62]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[63]  T. Hirai,et al.  High-Temperature Oxidation of Silicon Carbide and Silicon Nitride , 1997 .

[64]  P. V. Marrone,et al.  Chemical Relaxation with Preferential Dissociation from Excited Vibrational Levels , 1963 .

[65]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[66]  I. Choquet A NEW APPROACH TO MODEL AND SIMULATE NUMERICALLY SURFACE CHEMISTRY IN RAREFIED FLOWS , 1999 .

[67]  H. F. Nelson Direct Simulation of Transitional Flow for Hypersonic Re-entry Conditions , 1985 .

[68]  Takahiro Yamasaki,et al.  Nano-scale simulation for advanced gate dielectrics , 2003 .

[69]  M. J. Lanfranco,et al.  Results of a flight experiment on the catalytic efficiency of the Space Shuttle heat shield , 1982 .

[70]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[71]  Judith C. Yang,et al.  Structural comparisons of passivated SI(100) by atomic and molecular oxygen , 2003 .

[72]  C. D. Scott,et al.  Surface-slip equations for multicomponent, nonequilibrium air flow , 1985 .

[73]  R. G. Lord Some extensions to the Cercignani–Lampis gas–surface scattering kernel , 1991 .