Stress and microstructure evolution during initial growth of Pt on amorphous substrates

An understanding of the relationship between stress and the corresponding microstructure at various stages of thin film growth might allow prediction and control of both microstructure and film stress during thin film deposition. In the present study, a combination of in situ curvature measurement and ex situ microstructural characterization was used to make correlations between stress and microstructure for the growth of Pt on SiO2. Plan view transmission electron micrographs of Pt films with average thicknesses ranging from 3 to 35 A show the evolution of microstructure from isolated islands to a coalesced film, in agreement with models for stress behavior during the early stages of film growth. Quantitative measurements of grain size, island size, and areal fraction covered are extracted from these micrographs and, in conjunction with an island coalescence model, used to calculate the magnitude of the tensile stresses generated during coalescence. The predicted curvature is shown to compare favorably with the measured stresses.