Lattice structures for attractors I

We describe the basic lattice structures of attractors and repellers in dynamical systems. The structure of distributive lattices allows for an algebraic treatment of gradient-like dynamics in general dynamical systems, both invertible and noninvertible. We separate those properties which rely solely on algebraic structures from those that require some topological arguments, in order to lay a foundation for the development of algorithms to manipulate these structures computationally.

[1]  D. Chillingworth THE GENERAL TOPOLOGY OF DYNAMICAL SYSTEMS , 1995 .

[2]  M. Gameiro,et al.  Combinatorial-topological framework for the analysis of global dynamics. , 2012, Chaos.

[3]  Steven Roman,et al.  Lattices and ordered sets , 2008 .

[4]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[5]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[6]  Konstantin Mischaikow,et al.  Lattice Structures for Attractors II , 2013, Found. Comput. Math..

[7]  Konstantin Mischaikow,et al.  An Algorithmic Approach to Chain Recurrence , 2005, Found. Comput. Math..

[8]  Robert D. Franzosa,et al.  Index filtrations and the homology index braid for partially ordered Morse decompositions , 1986 .

[9]  Konstantin Mischaikow,et al.  A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems , 2009, SIAM J. Appl. Dyn. Syst..

[10]  Joel W. Robbin,et al.  Lyapunov maps, simplicial complexes and the Stone functor , 1992, Ergodic Theory and Dynamical Systems.

[11]  Konstantin Mischaikow,et al.  The Connection Matrix Theory for Semiflows on (Not Necessarily Locally Compact) Metric Spaces , 1988 .

[12]  Alfred W. Hales,et al.  Distributive Projective Lattices , 1970, Canadian Journal of Mathematics.

[13]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[14]  P. Pilarczyk,et al.  Global dynamics in a stage-structured discrete-time population model with harvesting. , 2012, Journal of theoretical biology.

[15]  G. Grätzer Lattice Theory: Foundation , 1971 .

[16]  William D. Kalies,et al.  A computational approach to conley's decomposition theorem , 2006 .

[17]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .