Disparity maps for dynamic stereo

Abstract Stereo matching algorithms often use regularization or relaxation methods to refine estimates of disparity in static images. Unfortunately, the computational requirements of these iterative techniques often preclude their use in real-time systems. Furthermore, most real-time stereo matching systems do not exploit the availability of a disparity map from the previous time step to compute the current disparity. We propose two algorithms for correspondence determination in dynamic stereo image sequences using prior disparity maps to localize, and to speed, the search for matches. The first method uses optical flow estimates in the stereo images to constrain the search space of feasible matchings. The second method uses a heuristic search scheme to prune matching graphs without explicit feature tracking or optical flow computation. Both methods can be applied to existing matching algorithms, to reduce their search space. The resulting improvement in matching is demonstrated in sample images and is quantified through the mean-square error of the computed disparity map compared to dense ground truth. The proposed methods are shown to improve the matching speed (decrease the latency) of five different matching algorithms.

[1]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[2]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[3]  Gonzalo Pajares,et al.  Relaxation by Hopfield network in stereo image matching , 1998, Pattern Recognit..

[4]  Giacomo Indiveri,et al.  Analog VLSI architectures for motion processing: from fundamental limits to system applications , 1996, Proc. IEEE.

[5]  H. K. Nishihara,et al.  Practical Real-Time Imaging Stereo Matcher , 1984 .

[6]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[7]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[8]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .

[9]  Ajit Singh,et al.  Optic flow computation : a unified perspective , 1991 .

[10]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  M. J. Hannah Description of SRI's Baseline Stereo System , 1984 .

[12]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..

[13]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[14]  Takeo Kanade,et al.  Development of a video-rate stereo machine , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[15]  Q.X. Wu,et al.  A Correlation-Relaxation-Labeling Framework for Computing Optical Flow - Template Matching from a New Perspective , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Bill Ross,et al.  A practical stereo vision system , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[18]  Thomas O. Binford,et al.  Depth from Edge and Intensity Based Stereo , 1981, IJCAI.

[19]  Moshe Kam,et al.  Computing the Cost of Occlusion , 2000, Comput. Vis. Image Underst..

[20]  Moshe Kam,et al.  Matching in dynamic stereo image sequences , 1999 .

[21]  Rafael C. González,et al.  Camera Geometries for Image Matching in 3-D Machine Vision , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[23]  Allen M. Waxman,et al.  Binocular Image Flows: Steps Toward Stereo-Motion Fusion , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[25]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[26]  William B. Thompson,et al.  Disparity Analysis of Images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Wendong Wang,et al.  Recovering three-dimensional velocity and establishing stereo correspondence from binocular image flows , 1995 .