Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results

Motivated by some results for linear programs and complementarity problems, this paper gives some new characterizations of the central path conditions for semidefinite programs. Exploiting these characterizations, some smoothing-type methods for the solution of semidefinite programs are derived. The search directions generated by these methods are automatically symmetric, and the overall methods are shown to be globally and locally superlinearly convergent under suitable assumptions. Some numerical results are also included which indicate that the proposed methods are very promising and comparable to several interior-point methods. Moreover, the current method seems to be superior to the smoothing method recently proposed by Chen and Tseng [Non-interior continuation methods for solving semidefinite complementarity problems, {Technical report}, Department of Mathematics, University of Washington, Seattle, 1999].

[1]  Masakazu Kojima,et al.  Local convergence of predictor—corrector infeasible-interior-point algorithms for SDPs and SDLCPs , 1998, Math. Program..

[2]  Paul Tseng,et al.  Merit functions for semi-definite complemetarity problems , 1998, Math. Program..

[3]  Christian Kanzow,et al.  On the Solution of Linear Programs by Jacobian Smoothing Methods , 2001, Ann. Oper. Res..

[4]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[5]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[6]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[7]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[8]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[9]  A. Fischer A special newton-type optimization method , 1992 .

[10]  Christian Kanzow,et al.  Predictor-Corrector Smoothing Methods for Linear Programs with a More Flexible Update of the Smoothing Parameter , 2002, Comput. Optim. Appl..

[11]  Paul Tseng,et al.  Analysis of Nonsmooth Symmetric-Matrix-Valued Functions with Applications to Semidefinite Complementarity Problems , 2003, SIAM J. Optim..

[12]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[13]  Brian Borchers,et al.  SDPLIB 1.1, A Library of Semidefinite Programming Test Problems , 1998 .

[14]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[15]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[16]  Christian Kanzow,et al.  PREDICTOR-CORRECTOR SMOOTHING METHODS FOR THE SOLUTION OF LINEAR PROGRAMS1 , 2000 .

[17]  Song Xu,et al.  A non–interior predictor–corrector path following algorithm for the monotone linear complementarity problem , 2000, Math. Program..

[18]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[19]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[22]  Christian Kanzow,et al.  Improved smoothing-type methods for the solution of linear programs , 2002, Numerische Mathematik.

[23]  Masakazu Kojima,et al.  A Predictor-corrector Interior-point Algorithm for the Semidenite Linear Complementarity Problem Using the Alizadeh-haeberly-overton Search Direction , 1996 .

[24]  Brian Borchers,et al.  A library of semidefinite programming test problems , 1999 .

[25]  P. Tseng Error Bounds and Superlinear Convergence Analysis of Some Newton-Type Methods in Optimization , 2000 .

[26]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[27]  Paul Tseng,et al.  Non-Interior continuation methods for solving semidefinite complementarity problems , 2003, Math. Program..

[28]  J. Burke,et al.  A Non-Interior Predictor-Corrector Path-Following Method for LCP , 1998 .

[29]  Defeng Sun,et al.  Semismooth Matrix-Valued Functions , 2002, Math. Oper. Res..