Polymorphisms in microRNA targets: a gold mine for molecular epidemiology.

MicroRNAs are non-coding small RNAs that regulate gene expression by Watson-Crick base pairing to target messenger RNA (mRNA). They are involved in most biological and pathological processes, including tumorigenesis. The binding of microRNA to mRNA is critical for regulating the mRNA level and protein expression. However, this binding can be affected by single-nucleotide polymorphisms that can reside in the microRNA target site, which can either abolish existing binding sites or create illegitimate binding sites. Therefore, polymorphisms in microRNA can have a differing effect on gene and protein expression and represent another type of genetic variability that can influence the risk of certain human diseases. Different approaches have been used to predict and identify functional polymorphisms within microRNA-binding sites. The biological relevance of these polymorphisms in predicted microRNA-binding sites is beginning to be examined in large case-control studies.

[1]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Vielle-Calzada,et al.  A Family of MicroRNAs Present in Plants and Animals[W][OA] , 2006, The Plant Cell Online.

[3]  James R. Brown,et al.  The micro RNA target paradigm: a fundamental and polymorphic control layer of cellular expression , 2007, Expert opinion on biological therapy.

[4]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[5]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[6]  A. Hatzigeorgiou,et al.  TarBase: A comprehensive database of experimentally supported animal microRNA targets. , 2005, RNA.

[7]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[8]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[9]  Praveen Sethupathy,et al.  Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. , 2007, American journal of human genetics.

[10]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[11]  Hsien-Da Huang,et al.  miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes , 2005, Nucleic Acids Res..

[12]  J. Micol,et al.  Mutations in the MicroRNA Complementarity Site of the INCURVATA4 Gene Perturb Meristem Function and Adaxialize Lateral Organs in Arabidopsis1[W] , 2006, Plant Physiology.

[13]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Eils,et al.  Argonaute—a database for gene regulation by mammalian microRNAs , 2005, BMC Bioinformatics.

[15]  K. Hemminki,et al.  Polymorphisms within microRNA-binding sites and risk of sporadic colorectal cancer , 2008 .

[16]  Robert B. Russell,et al.  Principles of MicroRNATarget Recognition , 2005 .

[17]  Carole Ober,et al.  Allele-specific targeting of microRNAs to HLA-G and risk of asthma. , 2007, American journal of human genetics.

[18]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[19]  Murat Gunel,et al.  Sequence Variants in SLITRK1 Are Associated with Tourette's Syndrome , 2005, Science.

[20]  N. Iwai,et al.  Polymorphisms in human pre-miRNAs. , 2005, Biochemical and biophysical research communications.

[21]  Lin Liu,et al.  Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research , 2007, BMC Genomics.

[22]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[23]  Michel J. Weber New human and mouse microRNA genes found by homology search , 2004, The FEBS journal.

[24]  Wen-Hsiung Li,et al.  Human polymorphism at microRNAs and microRNA target sites , 2007, Proceedings of the National Academy of Sciences.

[25]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[26]  Pablo Landgraf,et al.  Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. , 2007, Blood.

[27]  Chang-Zheng Chen,et al.  MicroRNAs as oncogenes and tumor suppressors. , 2005, The New England journal of medicine.

[28]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[29]  Ravi Jain,et al.  MicroRNA-143 Regulates Adipocyte Differentiation* , 2004, Journal of Biological Chemistry.

[30]  Wei Yan,et al.  Tissue-dependent paired expression of miRNAs , 2007, Nucleic acids research.

[31]  Y. Matsui,et al.  Epigenetic events in mammalian germ-cell development: reprogramming and beyond , 2008, Nature Reviews Genetics.

[32]  Zissimos Mourelatos,et al.  MicroRNAs: Biogenesis and Molecular Functions , 2008, Brain pathology.

[33]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[34]  Vesselin Baev,et al.  MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence , 2005, Nucleic Acids Res..

[35]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[36]  Thomas D. Schmittgen,et al.  The Human Angiotensin II Type 1 Receptor +1166 A/C Polymorphism Attenuates MicroRNA-155 Binding* , 2007, Journal of Biological Chemistry.

[37]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[38]  M. Georges,et al.  Polymorphic microRNA-target interactions: a novel source of phenotypic variation. , 2006, Cold Spring Harbor symposia on quantitative biology.

[39]  Ligang Wu,et al.  PolymiRTS Database: linking polymorphisms in microRNA target sites with complex traits , 2006, Nucleic Acids Res..

[40]  S. Banfi,et al.  Identification and characterization of microRNAs expressed in the mouse eye. , 2007, Investigative ophthalmology & visual science.

[41]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[42]  Yasushi Okuno,et al.  MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. , 2006, Journal of pharmacological sciences.

[43]  Uwe Ohler,et al.  Spatial preferences of microRNA targets in 3' untranslated regions , 2007, BMC Genomics.

[44]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[45]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[46]  Muller Fabbri,et al.  MicroRNAs and leukemias: how strong is the connection? , 2006, Leukemia research.

[47]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[48]  O. Kent,et al.  A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes , 2006, Oncogene.

[49]  Alessandro Fatica,et al.  A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis , 2005, Cell.

[50]  K. Kosik,et al.  Specific MicroRNAs Modulate Embryonic Stem Cell–Derived Neurogenesis , 2006, Stem cells.

[51]  D. Banerjee,et al.  A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance , 2007, Proceedings of the National Academy of Sciences.

[52]  Jonathan Miller,et al.  MicroRNA Target Detection and Analysis for Genes Related to Breast Cancer Using MDLcompress , 2007, EURASIP J. Bioinform. Syst. Biol..

[53]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[54]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[55]  Oliver Hobert,et al.  Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions , 2006, Nature Structural &Molecular Biology.

[56]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[57]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[58]  H. Osada,et al.  MicroRNAs in biological processes and carcinogenesis. , 2007, Carcinogenesis.

[59]  Lawrence S. Hon,et al.  The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression , 2007, Genome Biology.

[60]  Edwin Wang,et al.  Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers , 2007, Nucleic acids research.

[61]  K. Hemminki,et al.  Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. , 2007, Carcinogenesis.

[62]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[63]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  R. Weil,et al.  A novel method to detect functional microRNA targets. , 2006, Journal of molecular biology.

[65]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[66]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[67]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[69]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[70]  R. Barale,et al.  A catalog of polymorphisms falling in microRNA-binding regions of cancer genes. , 2008, DNA and cell biology.

[71]  G. Nuovo,et al.  Experimental validation of miRNA targets. , 2008, Methods.

[72]  Michal Ziv-Ukelson,et al.  A Study of Accessible Motifs and RNA Folding Complexity , 2006, RECOMB.

[73]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[74]  Xiaowei Wang,et al.  Systematic identification of microRNA functions by combining target prediction and expression profiling , 2006, Nucleic acids research.

[75]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[76]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[77]  Florian Caiment,et al.  A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep , 2006, Nature Genetics.

[78]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[79]  Edwin Cuppen,et al.  Diversity of microRNAs in human and chimpanzee brain , 2006, Nature Genetics.

[80]  Joaquín Dopazo,et al.  PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes , 2006, Nucleic Acids Res..

[81]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[82]  M. Solomon,et al.  Assembly of an APC-Cdh1-substrate complex is stimulated by engagement of a destruction box. , 2005, Molecular cell.

[83]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[84]  E. Furth,et al.  Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster , 2006, Nature Genetics.

[85]  R. Shiekhattar,et al.  MicroRNA biogenesis and cancer. , 2005, Cancer research.

[86]  Edwin Wang,et al.  Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos , 2006, Nucleic acids research.

[87]  Shuomin Zhu,et al.  MicroRNA-21 targets tumor suppressor genes in invasion and metastasis , 2008, Cell Research.

[88]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.