Numerical simulation for the two-dimensional and three-dimensional Riesz space fractional diffusion equations with delay and a nonlinear reaction term

ABSTRACT In this research, we consider the alternating direction implicit method for solving the two-dimensional and three-dimensional Riesz space fractional diffusion equations with delay and a nonlinear reaction term. The corresponding theoretical results including stability and convergence are provided. Moreover, the convergence order of the proposed method is improved by using the Richardson extrapolation method. The numerical results are presented to show the robustness and effectiveness of the numerical method.

[1]  Dumitru Baleanu,et al.  Fractional Bloch equation with delay , 2011, Comput. Math. Appl..

[2]  SACHIN BHALEKAR,et al.  A PREDICTOR-CORRECTOR SCHEME FOR SOLVING NONLINEAR DELAY DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 2011 .

[3]  S. Bhalekar,et al.  Solving Fractional Delay Differential Equations: A New Approach , 2015 .

[4]  Ivo Petrás,et al.  Modeling and numerical analysis of fractional-order Bloch equations , 2011, Comput. Math. Appl..

[5]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[6]  Aiguo Xiao,et al.  Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients , 2010, J. Comput. Appl. Math..

[7]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[8]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[9]  Yu He,et al.  Linearized Crank–Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay , 2018, Int. J. Comput. Math..

[10]  Yufeng Nie,et al.  A numerical approach for the Riesz space-fractional Fisher' equation in two-dimensions , 2017, Int. J. Comput. Math..

[11]  Zhi-Zhong Sun,et al.  A finite difference scheme for semilinear space-fractional diffusion equations with time delay , 2016, Appl. Math. Comput..

[12]  Fawang Liu,et al.  Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term , 2013 .

[13]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[14]  Fawang Liu,et al.  Numerical methods of fractional partial differential equations and applications , 2015 .

[15]  Banu Onaral,et al.  Application of the Positive Reality Principle to Metal Electrode Linear Polarization Phenomena , 1984, IEEE Transactions on Biomedical Engineering.

[16]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[17]  Zigen Ouyang,et al.  Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay , 2011, Comput. Math. Appl..

[18]  Jiye Yang,et al.  Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations , 2014, J. Comput. Phys..

[19]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[20]  S. Momani,et al.  AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 2008 .

[21]  MOHSEN ZAYERNOURI,et al.  Spectral and Discontinuous Spectral Element Methods for Fractional Delay Equations , 2014, SIAM J. Sci. Comput..

[22]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[23]  B. West Fractional Calculus in Bioengineering , 2007 .

[24]  Seakweng Vong,et al.  Unconditional Convergence in Maximum-Norm of a Second-Order Linearized Scheme for a Time-Fractional Burgers-Type Equation , 2018, J. Sci. Comput..

[25]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[26]  Kai Diethelm,et al.  Numerical solution of fractional order differential equations by extrapolation , 1997, Numerical Algorithms.

[27]  Wei Yang,et al.  A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations , 2014, J. Comput. Phys..

[28]  Jiye Yang,et al.  Finite element multigrid method for multi-term time fractional advection diffusion equations , 2015, Int. J. Model. Simul. Sci. Comput..

[29]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[30]  Fawang Liu,et al.  High-order numerical methods for the Riesz space fractional advection-dispersion equations , 2016, ArXiv.

[31]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[32]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[33]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..