Image Recovery with Soft-Morphological Image Prior

[1]  Q. Henry Wu,et al.  A pseudo top-hat mathematical morphological approach to edge detection in dark regions , 2002, Pattern Recognit..

[2]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[3]  Bhabatosh Chanda,et al.  Super Resolution Image Reconstruction Through Bregman Iteration Using Morphologic Regularization , 2012, IEEE Transactions on Image Processing.

[4]  Luc Vincent,et al.  Statistical morphology and Bayesian reconstruction , 1992, Journal of Mathematical Imaging and Vision.

[5]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[6]  Truong Q. Nguyen,et al.  Total subset variation prior , 2010, 2010 IEEE International Conference on Image Processing.

[7]  Jaakko Astola,et al.  Soft morphological filtering , 1995, Journal of Mathematical Imaging and Vision.

[8]  P. Maragos 3.3 – Morphological Filtering for Image Enhancement and Feature Detection , 2004 .

[9]  Youji Iiguni,et al.  Learning of structuring elements for morphological image model with a sparsity prior , 2010, 2010 IEEE International Conference on Image Processing.

[10]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[13]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[14]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.