Physical Characterization of 2015 JD1: A Possibly Inhomogeneous Near-Earth Asteroid

The surfaces of airless bodies such as asteroids are exposed to many phenomena that can alter their physical properties. Bennu, the target of the OSIRIS-REx mission, has demonstrated how complex the surface of a small body can be. In 2019 November, the potentially hazardous asteroid 2015 JD1 experienced a close approach of 0.033 1 au from the Earth. We present results of the physical characterization of 2015 JD1 based on ground-based radar, spectroscopy, and photometric observations acquired during 2019 November. Radar polarimetry measurements from the Arecibo Observatory indicate a morphologically complex surface. The delay-Doppler images reveal a contact binary asteroid with an estimated visible extent of ∼150 m. Our observations suggest that 2015 JD1 is an E-type asteroid with a surface composition similar to aubrites, a class of differentiated enstatite meteorites. The dynamical properties of 2015 JD1 suggest that it came from the ν 6 resonance with Jupiter, and spectral comparison with major E-type bodies suggests that it may have been derived from a parental body similar to the progenitor of the E-type (64) Angelina. Significantly, we find rotational spectral variation across the surface of 2015 JD1 from the red to blue spectral slope. Our compositional analysis suggests that the spectral slope variation could be due to the lack of iron and sulfides in one area of the surface of 2015 JD1 and/or differences in grain sizes.

[1]  T. Hiroi,et al.  High-resolution observations of bright boulders on asteroid Ryugu: 2. Spectral properties , 2021, Icarus.

[2]  J. Rivet,et al.  (6478) Gault: physical characterization of an active main-belt asteroid , 2021, Monthly Notices of the Royal Astronomical Society.

[3]  M. Cushing,et al.  Science Commissioning of NIHTS: The Near-infrared High Throughput Spectrograph on the Lowell Discovery Telescope , 2021, 2103.12722.

[4]  T. A. Lister,et al.  NEOExchange - an online portal for NEO and Solar System science , 2021, 2102.10144.

[5]  C. Pilorget,et al.  Collisional history of Ryugu’s parent body from bright surface boulders , 2020, Nature Astronomy.

[6]  D. Reuter,et al.  Exogenic basalt on asteroid (101955) Bennu , 2020 .

[7]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[8]  S. Ostro,et al.  Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission , 2020 .

[9]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[10]  F. DeMeo,et al.  Active Asteroid (6478) Gault: A Blue Q-type Surface below the Dust? , 2019, The Astrophysical Journal.

[11]  M. Birlan,et al.  Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS) , 2019, Icarus.

[12]  E. Zubko,et al.  Rapid variations of dust colour in comet 41P/Tuttle–Giacobini–Kresák , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[14]  P. Taylor,et al.  Arecibo radar observations of near-Earth asteroid (3200) Phaethon during the 2017 apparition , 2019, Planetary and Space Science.

[15]  A. Siviero,et al.  Phaethon variability during December 2017 closest approach to Earth , 2019, Planetary and Space Science.

[16]  C. Johnson,et al.  The global surface roughness of 25143 Itokawa , 2018, Icarus.

[17]  Nicholas Moskovitz,et al.  NIHTS: the near-infrared high throughput spectrograph for the Discovery Channel Telescope , 2018, Astronomical Telescopes + Instrumentation.

[18]  E. Beshore,et al.  Debiased orbit and absolute-magnitude distributions for near-Earth objects , 2018, Icarus.

[19]  C. Willmer The Absolute Magnitude of the Sun in Several Filters , 2018, The Astrophysical Journal Supplement Series.

[20]  M. Fulchignoni,et al.  A spectroscopic survey of the small near-Earth asteroid population: Peculiar taxonomic distribution and phase reddening , 2018, Planetary and Space Science.

[21]  L. Abe,et al.  New polarimetric and spectroscopic evidence of anomalous enrichment in spinel-bearing calcium-aluminium-rich inclusions among L-type asteroids , 2017, 1802.06975.

[22]  Michael Mommert,et al.  PHOTOMETRYPIPELINE: An automated pipeline for calibrated photometry , 2017, Astron. Comput..

[23]  R. Jedicke,et al.  Escape of asteroids from the main belt , 2017 .

[24]  Laird M. Close,et al.  Radar observations and shape model of asteroid 16 Psyche , 2017 .

[25]  M. Shepard,et al.  DETECTION OF ROTATIONAL SPECTRAL VARIATION ON THE M-TYPE ASTEROID (16) PSYCHE , 2016, 1701.02742.

[26]  D. Trilling,et al.  NEOLegacy: The ultimate Spitzer survey of Near Earth Objects , 2016 .

[27]  K. Muinonen,et al.  Radar scattering by planetary surfaces modeled with laboratory-characterized particles , 2016 .

[28]  W. Ip,et al.  Boulders on asteroid Toutatis as observed by Chang’e-2 , 2015, Scientific Reports.

[29]  Robert Jedicke,et al.  Surveys, Astrometric Follow-Up, and Population Statistics , 2015, 1503.04272.

[30]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[31]  Daniel J. Scheeres,et al.  Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations , 2013 .

[32]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[33]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[34]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[35]  John W. Fowler,et al.  Aperture Photometry Tool , 2012 .

[36]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[37]  Andreas Nathues,et al.  Color and Albedo Heterogeneity of Vesta from Dawn , 2012, Science.

[38]  Paul Mann,et al.  Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification , 2012, 1205.0248.

[39]  Andreas Nathues,et al.  Photometric, spectral phase and temperature effects on 4 Vesta and HED meteorites: Implications for the Dawn mission , 2012 .

[40]  T. B. Spahr,et al.  ExploreNEOs. V. AVERAGE ALBEDO BY TAXONOMIC COMPLEX IN THE NEAR-EARTH ASTEROID POPULATION , 2011 .

[41]  B. Warner,et al.  A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method , 2011, 1104.4114.

[42]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids II. Summary and synthesis , 2010 .

[43]  A. Nathues Spectral study of the Eunomia asteroid family Part II: The small bodies , 2010 .

[44]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[45]  K. Keil Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies , 2010 .

[46]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[47]  M. Shepard,et al.  Near-Earth asteroid surface roughness depends on compositional class , 2008 .

[48]  M. Barucci,et al.  Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission , 2008 .

[49]  S. Ostro,et al.  Physical properties of near-Earth Asteroid (33342) 1998 WT24 , 2008 .

[50]  M. Shepard,et al.  Radar observations of E-class Asteroids 44 Nysa and 434 Hungaria , 2008 .

[51]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids , 2008 .

[52]  Francoise Genova,et al.  SkyBoT, a new VO service to identify Solar System objects , 2006 .

[53]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[54]  Daniel J. Scheeres,et al.  Radar observations of asteroid 25143 Itokawa (1998 SF36) , 2004 .

[55]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[56]  S. Murchie,et al.  The geology of 433 Eros , 2002 .

[57]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[58]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[59]  L. Benner,et al.  Radar constraints on asteroid regolith properties using 433 Eros as ground truth , 2001 .

[60]  Richard P. Binzel,et al.  Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML , 2001 .

[61]  D. Lamb,et al.  Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105511.

[62]  F. Shelly,et al.  Lincoln Near-Earth Asteroid Program (LINEAR) , 2000 .

[63]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[64]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[65]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[66]  Jurgen Rahe,et al.  The NASA planetary data system , 1992 .

[67]  D. L. Rabinowitz,et al.  Detection of earth-approaching asteroids in near real time , 1991 .

[68]  D. Sears,et al.  Cumberland Falls chondritic inclusions: III. Consortium study of relationship to inclusions in Allan Hills 78113 aubrite , 1988 .

[69]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[70]  D. Morrison,et al.  The E asteroids and the origin of the enstatite achondrites , 1977 .