Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors

We investigate the seismic structure of the upper-mantle and mantle transition zone beneath India and Western China using PP and SS underside reflections off seismic discontinuities, which arrive as precursors to the PP and SS arrival. We use high-resolution array seismic techniques to identify precursory energy and to map lateral variations of discontinuity depths. We find deep reflections off the 410 km discontinuity (P410P and S410S) beneath Tibet, Western China and India at depths of 410–440 km and elevated underside reflections of the 410 km discontinuity at 370–390 km depth beneath the Tien Shan region and Eastern Himalayas. These reflections likely correspond to the olivine to wadsleyite phase transition. The 410 km discontinuity appears to deepen in Central and Northern Tibet. We also find reflections off the 660 km discontinuity beneath Northern China at depths between 660 and 700 km (P660P and S660S) which could be attributed to the mineral transformation of ringwoodite to magnesiowuestite and perovskite. These observations could be consistent with the presence of cold material in the middle and lower part of the mantle transition zone in this region. We also find a deeper reflector between 700 and 740 km depth beneath Tibet which cannot be explained by a depressed 660 km discontinuity. This structure could, however, be explained by the segregation of oceanic crust and the formation of a neutrally buoyant garnet-rich layer beneath the mantle transition zone, due to subduction of oceanic crust of the Tethys Ocean. For several combinations of sources and receivers we do not detect arrivals of P660P and S660S although similar combinations of sources and receivers give well-developed P660P and S660S arrivals. Our thermodynamic modelling of seismic structure for a range of compositions and mantle geotherms shows that non-observations of P660P and S660S arrivals could be caused by the dependence of underside reflection coefficients on the incidence angle of the incoming seismic waves. Apart from reflections off the 410 and 660 km discontinuities, we observe intermittent reflectors at 300 and 520 km depth. The discontinuity structure of the study region likely reflects lateral thermal and chemical variations in the upper-mantle and mantle transition zone connected to past and present subduction and mantle convection processes.

[1]  A. Deuss,et al.  Reconciling PP and P′P′ precursor observations of a complex 660 km seismic discontinuity , 2013 .

[2]  S. Ghosh,et al.  Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity , 2013 .

[3]  F. Vernon,et al.  Influence of station topography and Moho depth on the mislocation vectors for the Kyrgyz Broadband Seismic Network (KNET) , 2013 .

[4]  D. Weidner,et al.  Phase Transformations: Implications for Mantle Structure , 2013 .

[5]  B. Romanowicz,et al.  Do double ‘SS precursors’ mean double discontinuities? , 2012 .

[6]  P. Tackley,et al.  The primitive nature of large low shear-wave velocity provinces , 2012 .

[7]  Wenjin Zhao,et al.  Tibetan plate overriding the Asian plate in central and northern Tibet , 2011 .

[8]  N. Schmerr,et al.  Subducted lithosphere beneath the Kuriles from migration of PP precursors , 2011 .

[9]  W. DeGrado,et al.  Seismic Imaging of Transition Zone Discontinuities Suggests Hot Mantle West of Hawaii , 2011, Science.

[10]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[11]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[12]  M. Bianchi,et al.  Study of the lithospheric and upper-mantle discontinuities beneath eastern Asia by SS precursors , 2010 .

[13]  A. Addad,et al.  Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth's lower mantle , 2010 .

[14]  K. Litasov The influence of Al2O3 on the H2O content in periclase and ferropericlase at 25 GPa , 2010 .

[15]  T. Duffy,et al.  Velocity crossover between hydrous and anhydrous forsterite at high pressures , 2010 .

[16]  R. Hilst,et al.  Imaging the upper mantle transition zone with a generalized Radon transform of SS precursors , 2010 .

[17]  D. Alfé,et al.  Structure and elasticity of hydrous ringwoodite: A first principle investigation , 2009 .

[18]  A. Deuss,et al.  Global Observations of Mantle Discontinuities Using SS and PP Precursors , 2009 .

[19]  C. Thomas,et al.  Improving Seismic Resolution Through Array Processing Techniques , 2009 .

[20]  S. Sinogeikin,et al.  Sound velocities and elasticity of DHMS phase A to high pressure and implications for seismic velocities and anisotropy in subducted slabs , 2008 .

[21]  J. Connolly,et al.  Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity , 2008 .

[22]  E. Engdahl,et al.  Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma , 2008 .

[23]  P. Shearer,et al.  Determination and analysis of long-wavelength transition zone structure using SS precursors , 2008 .

[24]  Jennifer Andrews,et al.  Detailed nature of the 660 km region of the mantle from global receiver function data , 2008 .

[25]  E. Garnero,et al.  Seismic array detection of subducted oceanic crust in the lower mantle , 2008 .

[26]  D. Rubie,et al.  Splitting of the 520-Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle , 2008, Science.

[27]  T. Duffy,et al.  Single-crystal elasticity of wadsleyites, β-Mg 2 SiO 4 , containing 0.37-1.66 wt.% H 2 O , 2008 .

[28]  N. Schmerr,et al.  Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity , 2007, Science.

[29]  Cin-Ty A. Lee,et al.  Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth's mantle , 2007 .

[30]  R. Hilst,et al.  Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms , 2006 .

[31]  M. Mezouar,et al.  Phase transformations of subducted basaltic crust in the upmost lower mantle , 2006 .

[32]  N. Schmerr,et al.  Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors , 2006 .

[33]  S. Sinogeikin,et al.  Single-crystal elastic properties of dense hydrous magnesium silicate phase A , 2006 .

[34]  M. Hirschmann Water, Melting, and the Deep Earth H 2 O Cycle , 2006 .

[35]  K. Chambers,et al.  The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors , 2006, Science.

[36]  Y. Ohishi,et al.  Phase transition and density of subducted MORB crust in the lower mantle , 2005 .

[37]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[38]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[39]  A. Sano,et al.  Wet subduction versus cold subduction , 2005 .

[40]  Domenico Giardini,et al.  Is a pyrolitic adiabatic mantle compatible with seismic data , 2005 .

[41]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[42]  S. Ono,et al.  In situ X‐ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate , 2005 .

[43]  A. Sano,et al.  In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: Implication for the 660-km discontinuity , 2004 .

[44]  K. Litasov,et al.  Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity , 2004 .

[45]  Joseph S. Resovsky,et al.  Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle , 2004, Science.

[46]  S. Sutton,et al.  Thermal equation of state of akimotoite MgSiO3 and effects of the akimotoite–garnet transformation on seismic structure near the 660 km discontinuity , 2004 .

[47]  H. Spetzler,et al.  Sound velocities and elastic constants of iron-bearing hydrous ringwoodite , 2004 .

[48]  Brian L. N. Kennett,et al.  Rapid estimation of relative and absolute delay times across a network by adaptive stacking , 2004 .

[49]  D. Helmberger,et al.  Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States , 2004, Nature.

[50]  K. Hirose,et al.  Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications , 2004 .

[51]  T. Yoshino,et al.  Olivine‐wadsleyite transition in the system (Mg,Fe)2SiO4 , 2004 .

[52]  S. Sinogeikin,et al.  Elastic properties of hydrous ringwoodite , 2003 .

[53]  J. Morgan,et al.  Bending-related faulting and mantle serpentinization at the Middle America trench , 2003, Nature.

[54]  T. Kondo,et al.  Water solubility in Mg-perovskites and water storage capacity in the lower mantle , 2003 .

[55]  F. Tilmann,et al.  Seismic Imaging of the Downwelling Indian Lithosphere Beneath Central Tibet , 2003, Science.

[56]  P. Bird An updated digital model of plate boundaries , 2003 .

[57]  S. Haines,et al.  INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet , 2003 .

[58]  M. Weber,et al.  The upper mantle transition zone discontinuities in the Pacific as determined by short-period array data , 2002 .

[59]  D. Bercovici,et al.  Whole-mantle convection and the transition-zone water filter , 2002, Nature.

[60]  Robert J. Stern,et al.  SUBDUCTION ZONES , 2002 .

[61]  J. Saul,et al.  Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate Subduction , 2002, Science.

[62]  C. Guéguen,et al.  Control of Pa/Th ratio by particulate chemical composition in the ocean , 2002 .

[63]  Sebastian Rost,et al.  ARRAY SEISMOLOGY: METHODS AND APPLICATIONS , 2002 .

[64]  Jiuhua Chen,et al.  Effect of water on olivine‐wadsleyite phase boundary in the (Mg, Fe)2SiO4 system , 2002 .

[65]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[66]  B. Subrahmanyam,et al.  Estimation of sea surface salinity in the Bay of Bengal using Outgoing Longwave Radiation , 2002 .

[67]  D. Frost,et al.  The effect of water on the 410‐km discontinuity: An experimental study , 2002 .

[68]  S. Poli,et al.  Petrology of subducted slabs , 2002 .

[69]  J. Woodhouse,et al.  A systematic search for mantle discontinuities using SS‐precursors , 2002 .

[70]  K. Hirose Phase transitions in pyrolitic mantle around 670‐km depth: Implications for upwelling of plumes from the lower mantle , 2002 .

[71]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[72]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[73]  J. Woodhouse,et al.  Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.

[74]  S. Ono,et al.  Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle , 2001 .

[75]  T. Duffy,et al.  The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity , 2001, Nature.

[76]  Barbara Romanowicz,et al.  The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms , 2000 .

[77]  H. Yurimoto,et al.  Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa , 2000 .

[78]  N. Simmons,et al.  Multiple seismic discontinuities near the base of the transition zone in the Earth's mantle , 2000, Nature.

[79]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[80]  T. Kikegawa,et al.  In situ determination of the phase boundary between Wadsleyite and Ringwoodite in Mg2SiO4 , 2000 .

[81]  G. Helffrich Topography of the transition zone seismic discontinuities , 2000 .

[82]  Flanagan,et al.  Seismic Velocity and Density Jumps Across the 410- and 660-Kilometer Discontinuities. , 1999, Science.

[83]  J. Beckett,et al.  The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions , 1999 .

[84]  Harmen Bijwaard,et al.  Tethyan subducted slabs under India , 1999 .

[85]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[86]  P. Shearer,et al.  A map of topography on the 410‐km discontinuity from PP precursors , 1999 .

[87]  Sobolev,et al.  Seismic Evidence for a Detached Indian Lithospheric Mantle Beneath Tibet. , 1999, Science.

[88]  G. J. Taylor Origin of the Earth and Moon , 1998 .

[89]  A. Dziewoński,et al.  Global de-correlation of the topography of transition zone discontinuities , 1998 .

[90]  C. Sotin,et al.  Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity , 1998 .

[91]  D. Weidner,et al.  Chemical‐ and Clapeyron‐induced buoyancy at the 660 km discontinuity , 1998 .

[92]  Uchida,et al.  The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction , 1998, Science.

[93]  P. Earle,et al.  Mantle discontinuities under southern Africa from precursors to P′ P′df , 1998 .

[94]  P. Shearer,et al.  Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors , 1998 .

[95]  F. Wenzel,et al.  Properties of the mantle transition zone in northern Eurasia , 1998 .

[96]  G. D. Price,et al.  Computer modelling of a pressure induced phase change in clinoenstatite pyroxenes , 1997 .

[97]  Emmanuel Chaljub,et al.  Sensitivity of SS precursors to topography on the upper‐mantle 660‐km discontinuity , 1997 .

[98]  L. Stixrude Structure and sharpness of phase transitions and mantle discontinuities , 1997 .

[99]  McSween Hy,et al.  Evidence for Life in a Martian Meteorite , 1997 .

[100]  A. Curtis,et al.  Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion , 1997 .

[101]  A. Sheehan,et al.  Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track , 1997 .

[102]  F. Neele,et al.  Gross errors in upper‐mantle discontinuity topography from underside reflection data , 1997 .

[103]  R. Hilst,et al.  High resolution global tomography : a snapshot of convection in the Earth , 1997 .

[104]  R. Angel,et al.  Reversal of the orthoferrosilite-high-P clinoferrosilite transition; a phase diagram for FeSiO 3 and implications for the mineralogy of the Earth's upper mantle , 1997 .

[105]  R. Kind,et al.  The Nature of the 660-Kilometer Upper-Mantle Seismic Discontinuity from Precursors to the PP Phase , 1996, Science.

[106]  T. Gasparik Diopside-jadeite join at 16–22 GPa , 1996 .

[107]  T. Gasparik Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside , 1996 .

[108]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[109]  R. Kind,et al.  Seismic evidence for very deep roots of continents , 1996 .

[110]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[111]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[112]  C. Bina,et al.  Frequency dependence of the visibility and depths of mantle seismic discontinuities , 1994 .

[113]  George Helffrich,et al.  Phase transition Clapeyron slopes and transition zone seismic discontinuity topography , 1994 .

[114]  C. Beaumont,et al.  Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision , 1994, Nature.

[115]  B J Frost,et al.  A Bird's-Eye View. , 1994, Science.

[116]  J. Vidale,et al.  Sharpness of upper-mantle discontinuities determined from high-frequency reflections , 1993, Nature.

[117]  A. E. Ringwood,et al.  Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle , 1993 .

[118]  Klaus Stammler,et al.  SeismicHandler: programmable multichannel data handler for interactive and automatic processing of seismological analyses , 1993 .

[119]  R. Snieder,et al.  Topography of the 400 km discontinuity from observations of long-period P400P phases , 1992 .

[120]  L. Stixrude,et al.  Petrology, elasticity, and composition of the mantle transition zone , 1992 .

[121]  P. Shearer,et al.  Global mapping of topography on the 660-km discontinuity , 1992, Nature.

[122]  T. Jordan,et al.  Mantle layering from ScS reverberations: 3. The upper mantle , 1991 .

[123]  Peter M. Shearer,et al.  Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases , 1991 .

[124]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[125]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[126]  Peter M. Shearer,et al.  Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity , 1990, Nature.

[127]  D. L. Anderson,et al.  Seismic velocities in mantle minerals and the mineralogy of the upper mantle , 1989 .

[128]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[129]  Ichiro Nakanishi,et al.  Reflections of P′P′ from upper mantle discontinuities beneath the Mid-Atlantic Ridge , 1988 .

[130]  A. E. Ringwood,et al.  Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation , 1988, Nature.

[131]  T. Irifune An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle , 1987 .

[132]  I. Nakanishi Seismic reflections from the upper mantle discontinuities beneath the Mid‐Atlantic Ridge observed by a seismic array in Hokkaido Region, Japan , 1986 .

[133]  B. Romanowicz,et al.  A “no-lid” zone in the central Chang-Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh waves , 1986 .

[134]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[135]  D. Weidner,et al.  A mineral physics test of a pyrolite mantle , 1985 .

[136]  P. Michael,et al.  Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting , 1985 .

[137]  Don L. Anderson,et al.  Composition of the upper mantle: Geophysical tests of two petrological models , 1984 .

[138]  D. Helmberger,et al.  Upper mantle shear structure of North America , 1984 .

[139]  Shen-su Sun Chemical composition and origin of the earth's primitive mantle , 1982 .

[140]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[141]  Don L. Anderson,et al.  Chemical stratification of the mantle , 1979 .

[142]  L. P. Vinnik,et al.  Detection of waves converted from P to SV in the mantle , 1977 .

[143]  Ram Datt,et al.  The N‐th root process applied to seismic array data , 1976 .

[144]  R.A.W. Haddon,et al.  Processing of seismic precursor data , 1976 .

[145]  P. Molnar,et al.  Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. , 1975, Science.

[146]  R. Haddon,et al.  Precursors to PP , 1975 .

[147]  Paul G. Richards,et al.  Pulse distortion and Hilbert transformation in multiply reflected and refracted body waves , 1975, Bulletin of the Seismological Society of America.

[148]  I. Puzynin,et al.  Continuous analog of Newton's method as applied to the calculation of the binding energy of mesic molecules , 1973 .

[149]  K. Fuchs,et al.  Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations , 1971 .

[150]  D. Davies,et al.  Vespa Process for Analysis of Seismic Signals , 1971 .

[151]  A. E. Ringwood,et al.  The pyroxene-garnet transformation in the earth's mantle , 1967 .

[152]  B. Mason Composition of the Earth , 1966, Nature.

[153]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[154]  L. Bai,et al.  An analysis of SS precursors using spectral-element method seismograms , 2012 .

[155]  C. Thomas,et al.  Mantle transition zone structure along a profile in the SW Pacific: thermal and compositional variations , 2009 .

[156]  J. Revenaugh,et al.  Ancient subduction, mantle eclogite, and the 300 km seismic discontinuity , 2005 .

[157]  Peter Goldstein,et al.  85.5 SAC2000: Signal processing and analysis tools for seismologists and engineers , 2003 .

[158]  William Hung Kan Lee,et al.  International handbook of earthquake and engineering seismology , 2002 .

[159]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[160]  Lars Stixrude,et al.  Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale , 2000 .

[161]  M. S. Matthews,et al.  The Postspinel Phase Boundary in Mg 2 SiO 4 Determined by in Situ X-ray Diffraction , 1998 .

[162]  I. Jackson The Earth's Mantle: Composition, Structure, and Evolution , 1998 .

[163]  S. Karato On the separation of crustal component from subducted oceanic lithosphere near the 660 KM discontinuity , 1997 .

[164]  H. Keppler,et al.  Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 , 1996 .

[165]  S. Sipkin,et al.  Seismic evidence for silicate melt atop the 410-km mantle discontinuity , 1994, Nature.

[166]  William J. Chancellor,et al.  Soil Physical Properties , 1994 .

[167]  M. Weber,et al.  The effect of low-velocity sediments on the mislocation vectors of the GRF array , 1992 .

[168]  G. Mueller,et al.  The reflectivity method; a tutorial , 1985 .

[169]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[170]  M. McElhinny,et al.  The Earth : its origin, structure and evolution , 1979 .

[171]  J. Capon Signal Processing and Frequency-Wavenumber Spectrum Analysis for a Large Aperture Seismic Array* , 1973 .

[172]  L. Knopoff,et al.  The Upper mantle , 1972 .

[173]  A. E. Ringwood,et al.  Phase transformations in the mantle , 1968 .

[174]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[175]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[176]  Ș.,et al.  Seismic Velocities in Mantle Minerals and the Mineralogy of the Upper Mantle , 2022 .