Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization

With the introduction of spectral-domain optical coherence tomography (OCT), resulting in a significant increase in acquisition speed, the fast and accurate segmentation of 3-D OCT scans has become evermore important. This paper presents a novel probabilistic approach, that models the appearance of retinal layers as well as the global shape variations of layer boundaries. Given an OCT scan, the full posterior distribution over segmentations is approximately inferred using a variational method enabling efficient probabilistic inference in terms of computationally tractable model components: Segmenting a full 3-D volume takes around a minute. Accurate segmentations demonstrate the benefit of using global shape regularization: We segmented 35 fovea-centered 3-D volumes with an average unsigned error of 2.46 ± 0.22 μm as well as 80 normal and 66 glaucomatous 2-D circular scans with errors of 2.92 ± 0.5 μm and 4.09 ± 0.98 μm respectively. Furthermore, we utilized the inferred posterior distribution to rate the quality of the segmentation, point out potentially erroneous regions and discriminate normal from pathological scans. No pre- or postprocessing was required and we used the same set of parameters for all data sets, underlining the robustness and out-of-the-box nature of our approach.

[1]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[2]  Qi Yang,et al.  Automated layer segmentation of macular OCT images using dual-scale gradient information. , 2010, Optics express.

[3]  Alexander Wong,et al.  Intra-retinal layer segmentation in optical coherence tomography images. , 2009, Optics express.

[4]  J G Fujimoto,et al.  A new quality assessment parameter for optical coherence tomography , 2006, British Journal of Ophthalmology.

[5]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[6]  Cedric Ka-Fai Yiu,et al.  Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. , 2005, Investigative ophthalmology & visual science.

[7]  Mona K. Garvin,et al.  Automated 3D segmentation of intraretinal layers from optic nerve head optical coherence tomography images , 2010, Medical Imaging.

[8]  J. Hornegger,et al.  Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients , 2010, Biomedical optics express.

[9]  Ghassan Hamarneh,et al.  Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach , 2009, MICCAI.

[10]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[11]  Ghassan Hamarneh,et al.  Segmentation of Intra-Retinal Layers From Optical Coherence Tomography Images Using an Active Contour Approach , 2011, IEEE Transactions on Medical Imaging.

[12]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[13]  Anthony N. Pettitt,et al.  Variational Bayes for estimating the parameters of a hidden Potts model , 2009, Stat. Comput..

[14]  M. Baroni,et al.  Towards quantitative analysis of retinal features in optical coherence tomography. , 2007, Medical engineering & physics.

[15]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[16]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[17]  Junjie Bai,et al.  Optimal Multiple Surface Segmentation With Shape and Context Priors , 2013, IEEE Transactions on Medical Imaging.

[18]  Boris Hermann,et al.  Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. , 2010, Optics express.

[19]  Carmen A Puliafito,et al.  Automated detection of retinal layer structures on optical coherence tomography images. , 2005, Optics express.

[20]  Christoph Schnörr,et al.  Order Preserving and Shape Prior Constrained Intra-retinal Layer Segmentation in Optical Coherence Tomography , 2011, MICCAI.

[21]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[22]  U. Schmidt-Erfurth,et al.  Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography , 2007, British Journal of Ophthalmology.

[23]  David Huang,et al.  Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. , 2006, Ophthalmology.

[24]  Lucas Wexler,et al.  Optical Coherence Tomography Of Ocular Diseases , 2016 .

[25]  K. A. Vermeer,et al.  Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images , 2011, Biomedical optics express.

[26]  Xiaodong Wu,et al.  Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images , 2009, IEEE Transactions on Medical Imaging.

[27]  E A Swanson,et al.  Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.

[28]  William J Feuer,et al.  Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. , 2009, Ophthalmology.

[29]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[30]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[31]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[32]  Robert N Weinreb,et al.  Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. , 2011, Ophthalmology.

[33]  Peter Messmer,et al.  GPULib: GPU Computing in High-Level Languages , 2008, Computing in Science & Engineering.

[34]  L. Zangwill,et al.  Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. , 2001, Investigative ophthalmology & visual science.

[35]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[36]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[37]  Pascal A. Dufour,et al.  Graph-Based Multi-Surface Segmentation of OCT Data Using Trained Hard and Soft Constraints , 2013, IEEE Transactions on Medical Imaging.

[38]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .