The TRIAD algorithm as maximum likelihood estimation

The TRIAD algorithm is shown to be derivable as a maximum-likelihood estimator. In particular, using the QUEST measurement model, the TRIAD attitude error covariance matrix can be derived as the inverse of the Fisher information matrix. The treatment here gives a microscopic analysis of the algorithm and its connection to the QUEST algorithm. It also sheds valuable light on the origin of discrete degeneracies in deterministic attitude estimation.

[1]  J. Sedlak,et al.  Kalman filter estimation of attitude and gyro bias with the QUEST observation model , 1993 .

[2]  Malcolm D. Shuster,et al.  SCAD—A Fast Algorithm for Star Camera Attitude Determination , 2004 .

[3]  F. Markley,et al.  Quaternion Attitude Estimation Using Vector Observations , 2000 .

[4]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[5]  Michael Seadle Measurement , 2007, The Measurement of Information Integrity.

[6]  Daniele Mortari,et al.  ESOQ: A Closed-Form Solution to the Wahba Problem , 1997 .

[7]  Daniele Mortari,et al.  Second Estimator of the Optimal Quaternion , 2000 .

[8]  F. Markley Attitude determination using vector observations: A fast optimal matrix algorithm , 1993 .

[9]  M. Shuster Attitude analysis in Flatland: The plane truth , 1993 .

[10]  M. Shuster Attitude determination in higher dimensions , 1993 .

[11]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[12]  Malcolm D. Shuster,et al.  Deterministic Three-Axis Attitude Determination , 2004 .

[13]  M. Shuster A survey of attitude representation , 1993 .

[14]  Malcolm D. Shuster,et al.  QUEST and The Anti-QUEST: Good and Evil Attitude Estimation , 2005 .

[15]  F. Markley Attitude determination using vector observations and the singular value decomposition , 1988 .

[16]  H. D. Black,et al.  A passive system for determining the attitude of a satellite , 1964 .

[17]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .