Accommodating multiple potential normalizations in microbiome associations studies

[1]  Shannon T. Holloway,et al.  Phylogeny-guided microbiome OTU-specific association test (POST) , 2021, Microbiome.

[2]  Xianyang Zhang,et al.  LinDA: linear models for differential abundance analysis of microbiome compositional data , 2021, Genome Biology.

[3]  X. Hua,et al.  Kernel-based genetic association analysis for microbiome phenotypes identifies host genetic drivers of beta-diversity , 2021, bioRxiv.

[4]  A. Fodor,et al.  Powerful and robust non-parametric association testing for microbiome data via a zero-inflated quantile approach (ZINQ) , 2021, Microbiome.

[5]  Amy Y. Pan,et al.  Statistical analysis of microbiome data: The challenge of sparsity , 2021, Current Opinion in Endocrine and Metabolic Research.

[6]  George C. Tseng,et al.  Heavy-Tailed Distribution for Combining Dependent P-Values With Asymptotic Robustness , 2021, Statistica Sinica.

[7]  Timothy L. Tickle,et al.  Multivariable association discovery in population-scale meta-omics studies , 2021, bioRxiv.

[8]  S. Peddada,et al.  Analysis of microbial compositions: a review of normalization and differential abundance analysis , 2020, npj Biofilms and Microbiomes.

[9]  F. O'Gara,et al.  Bile Acid Signal Molecules Associate Temporally with Respiratory Inflammation and Microbiome Signatures in Clinically Stable Cystic Fibrosis Patients , 2020, Microorganisms.

[10]  José A Ferreira,et al.  Some comments on certain statistical aspects of the study of the microbiome , 2020, Briefings Bioinform..

[11]  M. Kretschmer,et al.  Metal ions weaken the hydrophobicity and antibiotic resistance of Bacillus subtilis NCIB 3610 biofilms , 2020, npj Biofilms and Microbiomes.

[12]  Jun Xie,et al.  Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures , 2018, Journal of the American Statistical Association.

[13]  Hyunwook Koh,et al.  A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies , 2019, Front. Genet..

[14]  D. Jacobs,et al.  Gut Microbiota Composition and Blood Pressure: The CARDIA Study , 2019, Hypertension.

[15]  L. C. Xia,et al.  Identifying Gut Microbiota Associated With Colorectal Cancer Using a Zero-Inflated Lognormal Model , 2019, Front. Microbiol..

[16]  T. Hope,et al.  Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection , 2019, PLoS pathogens.

[17]  Luc Bijnens,et al.  A broken promise: microbiome differential abundance methods do not control the false discovery rate , 2019, Briefings Bioinform..

[18]  N. Vallianou,et al.  Microbiome and diabetes: Where are we now? , 2018, Diabetes research and clinical practice.

[19]  Xiang Zhan,et al.  A small‐sample kernel association test for correlated data with application to microbiome association studies , 2018, Genetic epidemiology.

[20]  Jun Chen,et al.  A distance-based approach for testing the mediation effect of the human microbiome , 2018, Bioinform..

[21]  Li Chen,et al.  GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data , 2018, PeerJ.

[22]  Tao Hu,et al.  A zero‐inflated beta‐binomial model for microbiome data analysis , 2018, Stat.

[23]  A. Gori,et al.  Altered gut microbiome composition in HIV infection: causes, effects and potential intervention , 2018, Current opinion in HIV and AIDS.

[24]  A. Landay,et al.  HIV and aging: role of the microbiome , 2018, Current opinion in HIV and AIDS.

[25]  Xiang Zhan,et al.  A fast small‐sample kernel independence test for microbiome community‐level association analysis , 2017, Biometrics.

[26]  L. Kaplan,et al.  The Human Microbiome and Obesity: Moving beyond Associations. , 2017, Cell host & microbe.

[27]  Huilin Li,et al.  A multivariate distance‐based analytic framework for microbial interdependence association test in longitudinal study , 2017, Genetic epidemiology.

[28]  Iuliana Ionita-Laza,et al.  QRank: a novel quantile regression tool for eQTL discovery , 2017, Bioinform..

[29]  Xiang Zhan,et al.  Powerful Genetic Association Analysis for Common or Rare Variants with High-Dimensional Structured Traits , 2017, Genetics.

[30]  Xiang Zhan,et al.  A small‐sample multivariate kernel machine test for microbiome association studies , 2017, Genetic epidemiology.

[31]  Jesse R. Zaneveld,et al.  Normalization and microbial differential abundance strategies depend upon data characteristics , 2017, Microbiome.

[32]  Anthony L Komaroff,et al.  The Microbiome and Risk for Obesity and Diabetes , 2017, JAMA.

[33]  김강진 Phylogenetic Tree-based Microbiome Association Test , 2017 .

[34]  Hongzhe Li,et al.  Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test. , 2015, American journal of human genetics.

[35]  Max Nieuwdorp,et al.  Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes , 2014, Diabetes Care.

[36]  Ilya Shlyakhter,et al.  Cosi2 : An efficient simulator of exact and approximate coalescent with selection , 2014, bioRxiv.

[37]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[38]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[39]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[40]  Susan P. Holmes,et al.  Waste Not , Want Not : Why Rarefying Microbiome Data is Inadmissible . October 1 , 2013 , 2013 .

[41]  Nicolas Servant,et al.  A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis , 2013, Briefings Bioinform..

[42]  Mihai Pop,et al.  Robust methods for differential abundance analysis in marker gene surveys , 2013, Nature Methods.

[43]  Patricio S La Rosa,et al.  Biogeography of the ecosystems of the healthy human body , 2013, Genome Biology.

[44]  Hongzhe Li,et al.  Associating microbiome composition with environmental covariates using generalized UniFrac distances , 2012, Bioinform..

[45]  J. Lampe,et al.  The gut microbiome and obesity. , 2012, Nestle Nutrition Institute workshop series.

[46]  Z. Pei,et al.  Human Microbiome and HIV/AIDS , 2012, Current HIV/AIDS Reports.

[47]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[48]  Hongzhe Li,et al.  Disordered Microbial Communities in the Upper Respiratory Tract of Cigarette Smokers , 2010, PloS one.

[49]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[50]  G. Mateu-Figueras,et al.  Isometric Logratio Transformations for Compositional Data Analysis , 2003 .

[51]  S B Hulley,et al.  CARDIA: study design, recruitment, and some characteristics of the examined subjects. , 1988, Journal of clinical epidemiology.