Total variation bounds on the expectation of periodic functions with applications to recourse approximations

We derive a lower and upper bound for the expectation of periodic functions, depending on the total variation of the probability density function of the underlying random variable. Using worst-case analysis we derive tighter bounds for functions that are periodically monotone. These bounds can be used to evaluate the performance of approximations for both continuous and integer recourse models. In this paper, we introduce a new convex approximation for totally unimodular recourse models, and we show that this convex approximation has the best worst-case error bound possible, improving previous bounds with a factor 2. Moreover, we use similar analysis to derive error bounds for two types of discrete approximations of continuous recourse models with continuous random variables. Furthermore, we derive a tractable Lipschitz constant for pure integer recourse models.

[1]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[2]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[3]  J. Birge,et al.  A separable piecewise linear upper bound for stochastic linear programs , 1988 .

[4]  William T. Ziemba,et al.  Bounds for Two-Stage Stochastic Programs with Fixed Recourse , 1994, Math. Oper. Res..

[5]  Maarten H. van der Vlerk,et al.  Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..

[6]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[7]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[8]  Peter Kall,et al.  An upper bound for SLP using first and total second moments , 1991, Ann. Oper. Res..

[9]  C. HuangC.,et al.  Bounds on the Expectation of a Convex Function of a Random Variable , 1977 .

[10]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[11]  A. Madansky Bounds on the Expectation of a Convex Function of a Multivariate Random Variable , 1959 .

[12]  Peter Kall,et al.  On approximations and stability in stochastic programming , 1987 .

[13]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[14]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[15]  Maarten H. van der Vlerk Stochastic Programming with Simple Integer Recourse , 2001, Encyclopedia of Optimization.

[16]  Julia L. Higle,et al.  Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming , 1996 .

[17]  R. Wets,et al.  Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse , 1986 .

[18]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[19]  Maarten H. van der Vlerk,et al.  Convex Approximations for Totally Unimodular Integer Recourse Models: A Uniform Error Bound , 2015, SIAM J. Optim..

[20]  Georg Ch. Pflug,et al.  Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..

[21]  Maarten H. van der Vlerk,et al.  Convex approximations for complete integer recourse models , 2004, Math. Program..

[22]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[23]  W. Ziemba,et al.  A tight upper bound for the expectation of a convex function of a multivariate random variable , 1986 .

[24]  Michal Kaut,et al.  Evaluation of scenario-generation methods for stochastic programming , 2007 .

[25]  S. Sen Algorithms for Stochastic Mixed-Integer Programming Models , 2005 .

[26]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[27]  W. Römisch Stability of Stochastic Programming Problems , 2003 .

[28]  John R. Birge,et al.  Aggregation bounds in stochastic linear programming , 1985, Math. Program..

[29]  Rüdiger Schultz Continuity Properties of Expectation Functions in Stochastic Integer Programming , 1993, Math. Oper. Res..

[30]  Roger J.-B. Wets,et al.  Computing Bounds for Stochastic Programming Problems by Means of a Generalized Moment Problem , 1987, Math. Oper. Res..

[31]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[32]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[33]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[34]  Leen Stougie,et al.  Approximation in Stochastic integer programming , 2003 .

[35]  W. Rudin Real and complex analysis , 1968 .

[36]  William T. Ziemba,et al.  Stochastic Programming:Applications in Finance, Energy, Planning and Logistics , 2013 .

[37]  Karl Frauendorfer,et al.  Solving SLP Recourse Problems with Arbitrary Multivariate Distributions - The Dependent Case , 1988, Math. Oper. Res..

[38]  R. Schultz,et al.  Stochastic Integer Programming , 2003 .

[39]  Leen Stougie,et al.  Simple integer recourse models: convexity and convex approximations , 2006, Math. Program..