Sensorless enhancement of an atomic force microscope micro-cantilever quality factor using piezoelectric shunt control.

The image quality and resolution of the Atomic Force Microscope (AFM) operating in tapping mode is dependent on the quality (Q) factor of the sensing micro-cantilever. Increasing the cantilever Q factor improves image resolution and reduces the risk of sample and cantilever damage. Active piezoelectric shunt control is introduced in this work as a new technique for modifying the Q factor of a piezoelectric self-actuating AFM micro-cantilever. An active impedance is placed in series with the tip oscillation voltage source to modify the mechanical dynamics of the cantilever. The benefit of using this control technique is that it removes the optical displacement sensor from the Q control feedback loop to reduce measurement noise in the loop and allows for a reduction in instrument size.

[1]  James K. Gimzewski,et al.  An artificial nose based on a micromechanical cantilever array , 1999 .

[2]  M. Miles,et al.  High-Q dynamic force microscopy in liquid and its application to living cells. , 2001, Biophysical journal.

[3]  S. O. Reza Moheimani,et al.  A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers , 2003, IEEE Trans. Control. Syst. Technol..

[4]  Jiong Tang,et al.  Damping Reduction in Structures Using Piezoelectric Circuitry With Negative Resistance , 2011 .

[5]  Geunbae Lim,et al.  A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique , 2006 .

[6]  J. Thaysen,et al.  Environmental sensors based on micromachined cantilevers with integrated read-out , 2000, Ultramicroscopy.

[7]  Paul K. Hansma,et al.  Studies of vibrating atomic force microscope cantilevers in liquid , 1996 .

[8]  Harald Fuchs,et al.  Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation , 1998 .

[9]  Alfredo Franco-Obregón,et al.  Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode , 2001 .

[10]  C M Niemeyer,et al.  High-quality mapping of DNA-protein complexes by dynamic scanning force microscopy. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Xiaotang Hu,et al.  Metrological atomic force microscope with self-sensing measuring head , 2011 .

[12]  C. F. Schmidt,et al.  Thermal noise limitations on micromechanical experiments , 1998, European Biophysics Journal.

[13]  J. Gilman,et al.  Nanotechnology , 2001 .

[14]  Paolo Ermanni,et al.  Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study , 2012 .

[15]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[16]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[17]  C. Quate,et al.  AUTOMATED PARALLEL HIGH-SPEED ATOMIC FORCE MICROSCOPY , 1998 .

[18]  Andrew J. Fleming,et al.  Synthetic impedance for implementation of piezoelectric shunt-damping circuits , 2000 .

[19]  S. O. R. Moheimani,et al.  $Q$ Control of an Atomic Force Microscope Microcantilever: A Sensorless Approach , 2011, Journal of Microelectromechanical Systems.

[20]  Mervyn J Miles,et al.  Enhanced imaging of DNA via active quality factor control , 2001 .

[21]  Jerome Mertz,et al.  Regulation of a microcantilever response by force feedback , 1993 .

[22]  Theodore Antonakopoulos,et al.  Probe-based ultrahigh-density storage technology , 2008, IBM J. Res. Dev..

[23]  Oliver Brand,et al.  Resonant humidity sensors using industrial CMOS-technology combined with postprocessing , 1992 .

[24]  Piezoelectric bimorph micro-cantilever: a new gas pressure sensor , 2005, IEEE Ultrasonics Symposium, 2005..

[25]  José Luis Sánchez-Rojas,et al.  Laser vibrometry and impedance characterization of piezoelectric microcantilevers , 2007 .

[26]  Ken Haenen,et al.  Wide range pressure sensor based on a piezoelectric bimorph microcantilever , 2006 .

[27]  Nesbitt W. Hagood,et al.  Design of passive piezoelectric damping for space structures , 1993, Smart Structures.

[28]  S O R Moheimani,et al.  Resonant control of an atomic force microscope micro-cantilever for active Q control. , 2012, The Review of scientific instruments.

[29]  B. Rogers,et al.  Improving tapping mode atomic force microscopy with piezoelectric cantilevers. , 2004, Ultramicroscopy.

[30]  Cees Otto,et al.  Removing interference and optical feedback artifacts in atomic force microscopy measurements by application of high frequency laser current modulation , 2004 .

[31]  B. Rogers,et al.  Self-sensing tapping mode atomic force microscopy , 2005 .

[32]  H. Hölscher,et al.  Imaging of biomaterials in liquids: a comparison between conventional and Q-controlled amplitude modulation (‘tapping mode’) atomic force microscopy , 2006, Nanotechnology.

[33]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .