Rapid and Sensitive in Situ SERS Detection Using Dielectrophoresis

Surface-based sensors that rely on diffusion for transport of target molecules to the sensor surface can lead to long and sometimes impractical detection time for low analyte concentrations. Here we describe a new method for rapid in situ SERS detection of ultralow subpicomolar concentration of the analyte molecules. The method is based upon a dynamic dielectrophoresis-enabled assembly of metal nanoparticles in the form of pearl chains with nanometer-sized gaps. We demonstrate in situ SERS measurement of benzenethiol in less than 2 min without the requirement of long incubation times. This approach is then extended to detect the biological analyte, adenine, at femtomolar concentrations in a short time from a 2 μL sample droplet.

[1]  H. A. Pohl,et al.  Some Effects of Nonuniform Fields on Dielectrics , 1958 .

[2]  Fredrik Höök,et al.  Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. , 2010, Analytical chemistry.

[3]  Peng Jiang,et al.  Wafer-Scale Surface-Enhanced Raman Scattering Substrates with Highly Reproducible Enhancement , 2009 .

[4]  Ian M. White,et al.  Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis , 2012 .

[5]  L. Novotný,et al.  Near‐field Raman spectroscopy using a sharp metal tip , 2003, Journal of microscopy.

[6]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[7]  Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. , 2010, Angewandte Chemie.

[8]  D. Meisel,et al.  Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .

[9]  Ramasamy Manoharan,et al.  Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS) , 1998 .

[10]  Naomi J. Halas,et al.  Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[11]  Sang-Hyun Oh,et al.  Self-assembled plasmonic nanohole arrays. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  Sanjeev Kumar,et al.  Assembly of gold nanoparticles of different diameters between nanogap electrodes , 2010 .

[13]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[14]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[15]  Sang-Hyun Oh,et al.  Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly. , 2013, Analytical chemistry.

[16]  S. Tang,et al.  In situ SERS probing of nano-silver coated individual yeast cells. , 2013, Biosensors & bioelectronics.

[17]  Andrea Toma,et al.  Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures , 2011 .

[18]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[19]  Hakho Lee,et al.  Magnetic nanoparticle biosensors. , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[20]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[21]  S. J. van der Molen,et al.  Controlled formation of metallic nanowires via Au nanoparticle ac trapping , 2007, 0705.2119.

[22]  Y. Ozaki,et al.  Surface-Enhanced Raman Spectroscopy , 2005 .

[23]  O. Velev,et al.  Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions , 2001, Science.

[24]  Arnan Mitchell,et al.  Microfluidics and Raman microscopy: current applications and future challenges. , 2013, Chemical Society reviews.

[25]  Hanqing Yu,et al.  Hydrophobic Teflon films as concentrators for single-molecule SERS detection , 2012 .

[26]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[27]  Peter Nordlander,et al.  Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. , 2007, Nano letters.

[28]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[29]  Ajay Agarwal,et al.  Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. , 2009, Lab on a chip.

[30]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[31]  C. Haynes,et al.  Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions , 2010, Analytical and bioanalytical chemistry.

[32]  T. S. Alstrøm,et al.  Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. , 2013, ACS nano.

[33]  Jun Kameoka,et al.  An optofluidic device for surface enhanced Raman spectroscopy. , 2007, Lab on a chip.

[34]  Arnan Mitchell,et al.  Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering. , 2012, Analytical chemistry.

[35]  Saumitra Das,et al.  Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus , 2011, Scientific reports.

[36]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[38]  Hugo Ferreira,et al.  Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications , 2002 .

[39]  Alexandre G. Brolo,et al.  Nanohole-Enhanced Raman Scattering , 2004 .

[40]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[41]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[42]  Magnus Willander,et al.  Trapping single molecules by dielectrophoresis. , 2005, Physical review letters.

[43]  Arnan Mitchell,et al.  Dielectrophoresis-Raman spectroscopy system for analysing suspended nanoparticles. , 2011, Lab on a chip.

[44]  Yoon-Kyoung Cho,et al.  In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. , 2011, Lab on a chip.

[45]  Hyungsoon Im,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[46]  Sanjeev Kumar,et al.  Bridging the nanogap electrodes with gold nanoparticles using dielectrophoresis technique , 2009 .

[47]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[48]  S. Gray,et al.  Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. , 2011, Small.

[49]  De‐Yin Wu,et al.  Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration , 2002 .

[50]  S. D. Collins,et al.  Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[51]  Wolfgang Fritzsche,et al.  Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[52]  Hyungsoon Im,et al.  Self‐Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing , 2013, Advanced materials.

[53]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[54]  Yingying Yu,et al.  Elucidation of Electrostatic Interaction between Cationic Dyes and Ag Nanoparticles Generating Enormous SERS Enhancement in Aqueous Solution , 2011 .