Paragenesis and evolution of the hydrothermal Bacuri iron oxide-copper-gold deposit, Carajás Province (PA)

The Bacuri copper deposit is located about 9 km east of the world-class Sossego iron oxide-copper-gold deposit in the Carajas Province. It is hosted by the ca. 2.84 Ga Serra Dourada granite, the Bacuri Porphyry, and subordinated gabbro. The Bacuri deposit is situated within the regional-scale, WNW-ESE-trending ductile Canaa shear zone, characterized by early albite, scapolite-magnetite, potassium feldspar and biotite-scapolite-magnetite hydrothermal alteration zones. Copper mineralization was controlled and largely simultaneous to the development of a NE-SW-trending transcurrent fault zone. Within this zone, intense chlorite alteration, silicification and quartz veining overlap previous hydrothermal stages. Copper ore ­(chalcopyrite-pyrite-magnetite) is disseminated and related to veins and breccias. Chalcopyrite occurs along the mylonitic foliation in chlorite alteration zones, in brecciated quartz-(muscovite-fluorite) and undeformed milky quartz veins and in late potassium feldspar-epidote veinlets with open space textures. The relative temporal history of the Bacuri deposit reveals significant changes in physico-chemical parameters during the system evolution. Contribution of hot hypersaline metalliferous fluids was important during early sodic and potassic alteration stages and related to a regional hydrothermal system developed at relatively deep crustal levels. Influx of externally derived diluted fluids within the NE-SW-trending fault zone favoured the late shallow-emplaced chlorite alteration and silicification, and may have triggered the ore deposition due to decrease of temperature and salinity, accompanied by ƒO2 increase and pH decrease. Such significant changes could indicate a hybrid system that evolved in multiple pulses during progressive exhumation.

[1]  D. Banks,et al.  Hydrothermal fluid processes and evolution of the giant serra norte jaspilite-hosted iron ore deposits, carajás mineral Province, Brazil , 2013 .

[2]  R. Dall’Agnol,et al.  Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil , 2013 .

[3]  R. N. Villas,et al.  Depósito Cu-Au Visconde, Carajás (PA): geologia e alteração hidrotermal das rochas encaixantes , 2012 .

[4]  L. Monteiro,et al.  Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide–copper–gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis , 2012, Mineralium Deposita.

[5]  Lena Virgínia Soares Monteiro,et al.  Sistemática de isótopos estáveis aplicada à caracterização da evolução dos paleo-sistemas hidrotermais associados aos depósitos cupríferos Alvo Bacada e Alvo Castanha, Província Mineral do Carajás, PA , 2011 .

[6]  C. R. S. Souza Filho,et al.  Mesoarchean (3.0 and 2.86 Ga) host rocks of the iron oxide–Cu–Au Bacaba deposit, Carajás Mineral Province: U–Pb geochronology and metallogenetic implications , 2011 .

[7]  Martin P Smith,et al.  In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: new constraints on the timing and origin of mineralization , 2009 .

[8]  C. R. S. Filho,et al.  Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil , 2008 .

[9]  L. Monteiro,et al.  Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil) , 2008 .

[10]  C. R. Souza Filho,et al.  Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints , 2008 .

[11]  I. Mona Halogen-rich scapolite and biotite : Implications for metamorphic fluid-rock interaction , 2007 .

[12]  R. Cliff,et al.  Origin of fluids in iron oxide–copper–gold deposits: constraints from δ37Cl, 87Sr/86Sri and Cl/Br , 2006 .

[13]  R. Krymsky,et al.  Geology, geochemistry, and U–Pb geochronology of the Archean (2.74 Ga) Serra do Rabo granite stocks, Carajás Metallogenetic Province, northern Brazil , 2006 .

[14]  M. D. Silva,et al.  Geologia e mineralizacoes de Fe-Cu-Au do alvo GT 46 (Igarape Cinzento) Carajas , 2006 .

[15]  T. Niiranen Iron Oxide-Copper-Gold Deposits in Finland : case studies from the Peräpohja schist belt and the Central Lapland greenstone belt , 2005 .

[16]  D. Thorkelson,et al.  Regional-scale Proterozoic IOCG-mineralized breccia systems: examples from the Wernecke Mountains, Yukon, Canada , 2005 .

[17]  D. Groves,et al.  Geology and SHRIMP U-Pb Geochronology of the Igarapé Bahia Deposit, Carajás Copper-Gold Belt, Brazil: An Archean (2.57 Ga) Example of Iron-Oxide Cu-Au-(U-REE) Mineralization , 2005 .

[18]  M. Barton,et al.  Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .

[19]  L. Fontboté,et al.  Re–Os and Pb–Pb geochronology of the Archean Salobo iron oxide copper–gold deposit, Carajás mineral province, northern Brazil , 2003 .

[20]  Raimundo NetunoVillas,et al.  Gold deposits of the Carajás mineral province: deposit types and metallogenesis , 2001, Mineralium Deposita.

[21]  D. Groves,et al.  A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology , 2000 .

[22]  M. Macambira,et al.  Th–U–Pb isotopic systems and internal structures of complex zircons from an enderbite from the Pium Complex, Carajás Province, Brazil: evidence for the ages of granulite facies metamorphism and the protolith of the enderbite , 2000 .

[23]  M. Macambira,et al.  Geochronological provinces of the Amazonian Craton , 1999 .

[24]  R. Frietsch,et al.  Early proterozoic Cu(Au) and Fe ore deposits associated with regional NaCl metasomatism in northern Fennoscandia , 1997 .

[25]  N. Oliver,et al.  Internal control of fluid compositions in amphibolite-facies scapolitic calc-silicates, Mary Kathleen, Australia , 1992 .

[26]  Z. Lindenmayer,et al.  U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil , 1991 .

[27]  C. Tassinari,et al.  A review of the geochronology of the Amazonian Craton: Tectonic implications , 1989 .

[28]  A. K. Gibbs,et al.  U-Pb AGES OF ZIRCONS FROM THE GRÃO-PARÁ GROUP AND SERRA DOS CARAJÁS GRANITE, PARÁ, BRAZIL , 1986 .

[29]  D. Vanko,et al.  Occurrence and origin of marialitic scapolite in the Humboldt lopolith, N.W. Nevada , 1982 .

[30]  B. Stringham Fields of formation of some common hydrothermal-alteration minerals , 1952 .