Knot homologies and generalized quiver partition functions

We introduce generalized quiver partition functions of a knot K and conjecture a relation to generating functions of symmetrically colored HOMFLY-PT polynomials and corresponding HOMFLY-PT homology Poincaré polynomials. We interpret quiver nodes as certain basic holomorphic disks in the resolved conifold, with boundary on the knot conormal LK , a positive multiple of a unique closed geodesic, and with their (infinitesimal) boundary linking density measured by the adjacency matrix of the generalized quiver. The basic holomorphic disks that are quiver nodes appear in a certain U(1)-symmetric configuration. We propose an extension of the quiver partition function to arbitrary, not U(1)-symmetric, configurations as a function with values in chain complexes. The chain complex differential is trivial at the U(1)-symmetric configuration, under deformations the complex changes, but its homology remains invariant. We also study recursion relations for the partition functions connected to knot homologies. We show that, after a suitable change of variables, any (generalized) quiver partition function satisfies the recursion relation of a single toric brane in C3. ar X iv :2 10 8. 12 64 5v 2 [ he pth ] 1 3 Ja n 20 22

[1]  Chern-Simons gauge theory as a string theory , 1992, hep-th/9207094.

[2]  M. Aganagic,et al.  Knot Homology and Refined Chern–Simons Index , 2015 .

[3]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[4]  Marko Stosic,et al.  BPS states, knots and quivers , 2017, 1707.02991.

[5]  H. Hofer,et al.  Introduction to Symplectic Field Theory , 2000, math/0010059.

[6]  Nikita A. Nekrasov Seiberg-Witten prepotential from instanton counting , 2002 .

[7]  Marko Stosic,et al.  Knots-quivers correspondence , 2017, Advances in Theoretical and Mathematical Physics.

[8]  Jacob Rasmussen,et al.  The Superpolynomial for Knot Homologies , 2005, Exp. Math..

[9]  D. Tubbenhauer,et al.  Functoriality of colored link homologies , 2017, Proceedings of the London Mathematical Society.

[10]  T. Ekholm,et al.  Higher genus knot contact homology and recursion for colored HOMFLY-PT polynomials , 2018, Advances in Theoretical and Mathematical Physics.

[11]  Pietro Longhi,et al.  Multi-cover skeins, quivers, and 3d , 2020 .

[12]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[13]  M. Panfil,et al.  Nahm sums, quiver A-polynomials and topological recursion , 2020, Journal of High Energy Physics.

[14]  Taro Kimura,et al.  Branes, quivers and wave-functions , 2020, SciPost Physics.

[15]  M. Yamazaki,et al.  SL(2, R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls , 2011 .

[16]  A. Efimov Cohomological Hall algebra of a symmetric quiver , 2011, Compositio Mathematica.

[17]  Andrei Okounkov,et al.  Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.

[18]  Pietro Longhi,et al.  Physics and Geometry of Knots-Quivers Correspondence , 2018, Communications in Mathematical Physics.

[19]  S. Gukov,et al.  Super-A-polynomial for knots and BPS states , 2012, 1205.1515.

[20]  E. Wagner A CLOSED FORMULA FOR THE EVALUATION OF slN -FOAMS , 2018 .

[21]  D. Gaiotto,et al.  Gauge Theories Labelled by Three-Manifolds , 2011, 1108.4389.

[22]  S. Gukov,et al.  Vortex Counting and Lagrangian 3-Manifolds , 2010, 1006.0977.

[23]  J. Tariboon Quantum Calculus , 2020, The Journal of King Mongkut's University of Technology North Bangkok.

[24]  Tangle addition and the knots‐quivers correspondence , 2020, Journal of the London Mathematical Society.

[25]  Marko Stosic,et al.  Homological algebra of knots and BPS states , 2011, 1112.0030.

[26]  M. Panfil,et al.  Topological strings, strips and quivers , 2018, Journal of High Energy Physics.

[27]  Kenneth C. Millett,et al.  A new polynomial invariant of knots and links , 1985 .

[28]  Knot Invariants and Topological Strings , 1999, hep-th/9912123.

[29]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[30]  G. Moore,et al.  Framed BPS states , 2010, 1006.0146.

[31]  David,et al.  Topological Strings* , 1988 .

[32]  E. Witten Supersymmetry and Morse theory , 1982 .

[33]  C. Vafa,et al.  Khovanov-Rozansky Homology and Topological Strings , 2004, hep-th/0412243.

[34]  Sabin Cautis Remarks on coloured triply graded link invariants , 2016, 1611.09924.

[35]  Mikhail Khovanov,et al.  Matrix factorizations and link homology II , 2008 .

[36]  Igor Frenkel,et al.  A Categorification of the Jones Polynomial , 2008 .

[37]  Jozef H. Przytycki,et al.  Invariants of links of Conway type , 1988, 1610.06679.

[38]  Marko Stovsi'c,et al.  Donaldson-Thomas invariants, torus knots, and lattice paths , 2018, Physical Review D.

[39]  Huai-liang Chang Donaldson Thomas invariants , 2009 .

[40]  A. Kirillov Quiver Representations and Quiver Varieties , 2016 .

[41]  M. Kontsevich,et al.  Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants , 2010, 1006.2706.

[42]  Jakub Jankowski,et al.  Permutohedra for knots and quivers , 2021, Physical Review D.

[43]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[44]  Mikhail Khovanov,et al.  Matrix factorizations and link homology , 2008 .

[45]  Open p-branes , 1995, hep-th/9512059.