Compact ultra-wideband PIFA antenna for high performance mobile devices

A planar inverted-F antenna (PIFA) with a very wideband that begins in 690 MHz and ends in 12.91 GHz is presented. This large wideband is achieved within the size restrictions imposed to some types of mobile devices and the additional advantages of high efficiency and very acceptable reflection coefficient. With this ultra-wideband the PIFA proposed is able to work correctly in every one of the 52 frequency bands specified for the LTE services, except 450 MHz. In this way, the antenna can work properly in many important bands such as LTE 700, GSM 800, GSM 900, DCS, PCS, AWS, WiFi, Bluetooth and the segment of 3.1–10.6 GHz for Ultra-Wideband services.

[1]  M. Cabedo-Fabres,et al.  The Theory of Characteristic Modes Revisited: A Contribution to the Design of Antennas for Modern Applications , 2007, IEEE Antennas and Propagation Magazine.

[2]  Kin-Lu Wong,et al.  Ultra‐wideband metal‐plate monopole antenna for laptop application , 2004 .

[3]  P. Vainikainen,et al.  Resonator-based analysis of the combination of mobile handset antenna and chassis , 2002 .

[4]  Seong-Ook Park,et al.  Compact PIFA for Mobile Terminals Supporting Multiple Cellular and Non-Cellular Standards , 2009, IEEE Transactions on Antennas and Propagation.

[5]  Zhenya Lei,et al.  Ultra-wideband planar inverted-F antennas with cut-etched ground plane , 2012 .

[6]  Hildeberto Jardon-Aguilar,et al.  Ultra-Wideband Planar Inverted-F Antenna (PIFA) for Mobile Phone Frequencies and Ultra-Wideband Applications , 2013 .

[7]  O. Quevedo-Teruel,et al.  Compact Loaded PIFA for Multifrequency Applications , 2010, IEEE Transactions on Antennas and Propagation.

[8]  Zahra Mansouri,et al.  Ultra Wideband PIFA Antenna with Supporting GSM and WiMAX for Mobile Phone Applications , 2015, 2015 Fifth International Conference on Advanced Computing & Communication Technologies.

[9]  Yahya Rahmat-Samii,et al.  Low-profile enhanced-bandwidth PIFA antennas for wireless communications packaging , 1997 .

[10]  Jennifer T. Bernhard,et al.  Design Guidelines Using Characteristic Mode Theory for Improving the Bandwidth of PIFAs , 2015, IEEE Transactions on Antennas and Propagation.

[11]  O. Litschke,et al.  Integrated planar multiband antennas for personal communication handsets , 2006, IEEE Transactions on Antennas and Propagation.

[12]  M.K. Karkkainen Meandered multiband PIFA with coplanar parasitic patches , 2005, IEEE Microwave and Wireless Components Letters.

[13]  Yang Lu,et al.  An ultra‐wideband planar inverted‐F antenna , 2010 .

[14]  Hans Schantz,et al.  The art and science of ultrawideband antennas , 2005 .

[15]  H. I. Hraga,et al.  A Low-Profile Ultra-Wideband Modified Planar Inverted-F Antenna , 2013, IEEE Transactions on Antennas and Propagation.

[16]  Hildeberto Jardon-Aguilar,et al.  Bandwidth improvement of a broadband PIFA for multiple mobile services , 2013 .

[17]  K. Kobayashi,et al.  Detachable mobile radio units for the 800 MHz land mobile radio system , 1984, 34th IEEE Vehicular Technology Conference.

[18]  M.E. Bialkowski,et al.  Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane , 2004, IEEE Microwave and Wireless Components Letters.

[19]  P. Kabacik,et al.  Investigations into Operation of Single- and Multi-Layer Configurations of Planar Inverted-F Antenna , 2007, IEEE Antennas and Propagation Magazine.

[20]  J. Anguera,et al.  Analysis of the Human Head Interaction in Handset Antennas with Slotted Ground Planes , 2012, IEEE Antennas and Propagation Magazine.

[21]  Hildeberto Jardon-Aguilar,et al.  Very broadband PIFA antenna for mobile communications and ultrawideband services , 2014 .

[22]  B. Sanz-Izquierdo,et al.  Single and double layer planar multiband PIFAs , 2006, IEEE Transactions on Antennas and Propagation.

[23]  M.Y.W. Chia,et al.  Miniature built-in multiband antennas for mobile handsets , 2004, IEEE Transactions on Antennas and Propagation.