Age and metallicity gradients in early-type galaxies: A dwarf to giant sequence

We studied the stellar populations of 40 early-type galaxies using medium-resolution long-slit spectroscopy along their major axes (and along the minor axis for two of them). The sample, including elliptical and lenticular galaxies as well as dwarf galaxies, is combined with other previously published data in order to discuss the systematics of the radial gradients of age and metallicity over a large mass range, from 10(7)M(circle dot) to 10(12)M(circle dot) (-9.2 > M-B > -22.4 mag). The well-known mass-metallicity relation is continuous throughout the whole mass range, in the sense that more massive galaxies are more metal-rich. The age-mass relation is consistent with the idea of downsizing: smaller galaxies have more extended star formation histories than more massive ones. The transition-type dwarfs (intermediate between dwarf irregular and dwarf elliptical galaxies) deviate from this relation having younger mean age, and the low-mass dwarf spheroidals have older ages, marking a discontinuity in the relation, possibly due to selection effects. In all mass regimes, the mean metallicity gradients are approximately -0.2 and the mean age gradients + 0.1 dex per decade of radius. The individual gradients are widely spread: -0.1 < del(Age) < 0.4 and -0.54 <del([Fe/H]) < + 0.2. We do not find evidence for a correlation between the metallicity gradient and luminosity, velocity dispersion, central age or age gradient. Likewise, we do not find a correlation between the age gradient and any other parameter in bright early-type galaxies. In faint early-types with M-B greater than or similar to -17 mag, on the other hand, we find a strong correlation between the age gradient and luminosity: the age gradient becomes more positive for fainter galaxies. Together with the observed downsizing phenomenon this indicates that, as time passes, star formation persists in dwarf galaxies and becomes more centrally concentrated. However, this prolonged central star formation is not reflected in the metallicity profiles of the dwarfs in our sample. We conclude that various physical mechanisms can lead to similar gradients and that these gradients are robust against the environmental effects. In particular, the gradients observed in dwarf galaxies certainly survived the transformation of the progenitors through tidal harassment or/and ram-pressure stripping. The diversity of metallicity gradients amongst dwarf elliptical galaxies may reflect a plurality of progenitors' morphologies. The dwarfs with steep metallicity gradients could have originated from blue compact dwarfs and those with flat profiles from dwarf irregulars and late-type spirals.

[1]  The internal dynamics of the Local Group dwarf elliptical galaxies NGC 147, 185 and 205★ , 2006, astro-ph/0603700.

[2]  E. Grebel,et al.  Modes of star formation and the origin of field populations : proceedings of a workshop held at Max-Planck Institute of Astronomy, Heidelberg, Germany, 9-13 October 2000 , 2002 .

[3]  W. Couch,et al.  THE MASS–METALLICITY GRADIENT RELATION OF EARLY-TYPE GALAXIES , 2009, 0901.0548.

[4]  Spectroscopic Evidence for a Supermassive Black Hole in NGC 4486B , 1997, astro-ph/9703188.

[5]  Spatially resolved spectroscopy of early-type galaxies over a range in mass , 2007, astro-ph/0702572.

[6]  The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy , 2006, astro-ph/0608370.

[7]  Evidence for a warm interstellar medium in the Fornax dwarf ellipticals FCC046 and FCC207 , 2003 .

[8]  Allan Sandage,et al.  The Luminosity Function of Galaxies , 1988 .

[9]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[10]  Nuclear stellar discs in low-luminosity elliptical galaxies:NGC 4458 and 4478 , 2004, astro-ph/0408084.

[11]  University of Leicester,et al.  A close look at the Centaurus A group of galaxies:I. Metallicity distribution functions and population gradients in early-type dwarfs , 2010, 1002.0341.

[12]  W. Baade,et al.  The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula , 1944 .

[13]  Evidence for a warm ISM in the Fornax dEs FCC046 and FCC207 , 2002, astro-ph/0210346.

[14]  J. Gallagher MAPPING DARK NEBULAE IN ELLIPTICAL GALAXIES. , 1986 .

[15]  P. Prugniel,et al.  Spectroscopic ages and metallicities of stellar populations : validation of full spectrum fitting , 2008, 0801.0871.

[16]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[17]  H. Corwin UBV photoelectric photometry and photometric parameters for 40 galaxies , 1980 .

[18]  Spain.,et al.  The link between the masses and central stellar populations of S0 galaxies , 2008, 0803.0305.

[19]  The dynamics of the dwarf elliptical galaxy FS 76: Bridging the kinematic dichotomy between elliptical and dwarf elliptical galaxies. , 2001 .

[20]  T. Lauer,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. II. “CUSP” ELLIPTICALS , 2008, 0805.3533.

[21]  A. Helmi,et al.  Study of the Sextans dwarf spheroidal galaxy from the DART Ca II triplet survey , 2010, 1009.4857.

[22]  Dwarf elliptical galaxies with kinematically decoupled cores , 2004, astro-ph/0407425.

[23]  J. University,et al.  Galactic chemical evolution in hierarchical formation models , 2009, 0905.4189.

[24]  Maria-Rosa L. Cioni,et al.  The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies , 2009, 0904.3136.

[25]  K. Olsen,et al.  THE NGC 404 NUCLEUS: STAR CLUSTER AND POSSIBLE INTERMEDIATE-MASS BLACK HOLE , 2010, 1003.0680.

[26]  Eric Emsellem,et al.  A 60 pc counter-rotating core in NGC 4621 , 2002, astro-ph/0209361.

[27]  D. Forbes,et al.  The correlation of metallicity gradient with galaxy mass , 2005, astro-ph/0504374.

[28]  P. Prugniel,et al.  Stellar population and kinematics of NGC 404 , 2010, 1001.4087.

[29]  C. Carollo,et al.  Metallicity gradients in early-type galaxies , 1993 .

[30]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[31]  E. K. Grebel,et al.  Population Gradients in Local Group Dwarf Spheroidal Galaxies , 2001, astro-ph/0109121.

[32]  I. Saviane,et al.  New constraints on the chemical evolution of the dwarf spheroidal galaxy Leo I from VLT spectroscopy , 2009, 0904.2718.

[33]  W. Zeilinger,et al.  Formation and evolution of dwarf elliptical galaxies - I. Structural and kinematical properties , 2004, astro-ph/0412553.

[34]  Stellar populations of early-type galaxies in different environments. III. Line-strength gradients , 2006, astro-ph/0604571.

[35]  S. Tremaine,et al.  Hubble Space Telescope Observations of the Double Nucleus of NGC 4486B , 1996 .

[36]  G. Mackie,et al.  Evolution of Gas and Stars in the Merger Galaxy NGC 1316 (Fornax A) , 1998 .

[37]  C. Gallart,et al.  The Stellar Content of the Local Group Dwarf Galaxy Phoenix , 1999, astro-ph/9905309.

[38]  Tenerife,et al.  Search for Blue Compact Dwarf Galaxies During Quiescence. II. Metallicities of Gas and Stars, Ages, and Star Formation Rates , 2009 .

[39]  B. Letarte,et al.  Carbon Star Survey in the Local Group. VI. The Dwarf Spheroidal Galaxy NGC 205 , 2003 .

[40]  L. Ho,et al.  The Narrow-Line Regions of LINERs as Resolved with the Hubble Space Telescope , 1999, astro-ph/9910375.

[41]  A. Bosma,et al.  Rotation and velocity dispersion in the stellar component of NGC 1316 (Fornax A) , 1985 .

[42]  W. Couch,et al.  Early-type galaxies at large galactocentric radii – I. Stellar kinematics and photometric properties , 2010, 1007.0599.

[43]  M. Cappellari,et al.  Objects in NGC 205 Resolved into Stellar Associationsby Hubble Space Telescope Ultraviolet Imaging , 1999, astro-ph/9901070.

[44]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[45]  The stellar populations of early-type galaxies in the Fornax cluster , 2000 .

[46]  I. Chilingarian,et al.  SDSS J150634.27+013331.6: the second compact elliptical galaxy in the NGC 5846 group★ , 2010, 1003.1663.

[47]  R. Mcclure CYANOGEN ADSORPTION IN THE NUCLEI OF GALAXIES. , 1969 .

[48]  P. B. Stetson,et al.  Homogeneous Photometry for Star Clusters and Resolved Galaxies. I. A Survey of Bright Stars in the Fornax Dwarf Spheroidal Galaxy , 1998 .

[49]  P. Prugniel,et al.  Kinematical data on early-type galaxies. VI , 1997 .

[50]  Vanessa Hill,et al.  Two Distinct Ancient Components in the Sculptor Dwarf Spheroidal Galaxy: First Results from the Dwarf Abundances and Radial Velocities Team , 2004 .

[51]  grape-sph chemodynamical simulation of elliptical galaxies — I. Evolution of metallicity gradients , 2003, astro-ph/0310160.

[52]  Galaxy Populations and Evolution in Clusters. IV. Deep H I Observations of Dwarf Elliptical Galaxies in the Virgo Cluster , 2003, astro-ph/0303185.

[53]  E. Grebel,et al.  Population Gradients in Local Group Dwarf Spheroidals , 2001 .

[54]  P. Prugniel,et al.  Star formation history of KDG 61 and KDG 64 from spectroscopy and colour–magnitude diagrams , 2010, 1003.6061.

[55]  Puragra Guhathakurta,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. I. THE SCULPTOR DWARF SPHEROIDAL GALAXY , 2009, 0909.3092.

[56]  F. Schweizer An optical study of the giant radio galaxy NGC 1316 (Fornax A). , 1980 .

[57]  G. Worthey,et al.  Publications of the Astronomical Society of the Pacific The Distribution Of Heavy Elements In Spiral And Elliptical Galaxies , 1999 .

[58]  S. Keller,et al.  THE CHEMISTRY OF THE TRAILING ARM OF THE SAGITTARIUS DWARF GALAXY , 2010, 1006.4885.

[59]  Daisuke Kawata,et al.  GCD+: a new chemodynamical approach to modelling supernovae and chemical enrichment in elliptical galaxies , 2003 .

[60]  R. Bender,et al.  Spatially resolved spectroscopy of Coma cluster early-type galaxies III. The stellar population gradients ? , 2003 .

[61]  Oxygen and Nitrogen in Leo A and GR 8 , 2005, astro-ph/0509678.

[62]  F. Matteucci,et al.  The formation of the [alpha/Fe] radial gradients in the stars of elliptical galaxies , 2007, 0706.2932.

[63]  G. Gavazzi,et al.  The Origin of Dwarf Ellipticals in the Virgo Cluster , 2008, 0801.2113.

[64]  Line-of-sight velocity distributions of low-luminosity elliptical galaxies , 2001, astro-ph/0103295.

[65]  Kinematics and stellar population of NGC 4486A , 2011, 1102.2736.

[66]  J. Salzer,et al.  Neutral Gas Distributions and Kinematics of Five Blue Compact Dwarf Galaxies , 1998, astro-ph/9806246.

[67]  U. Austin,et al.  The supermassive black hole of Fornax A , 2008, 0809.0696.

[68]  P. Prugniel,et al.  A database of high and medium-resolution stellar spectra ?;?? , 2001, astro-ph/0101378.

[69]  High-Resolution H I Observations of the Galaxy NGC 404: A Dwarf S0 with Abundant Interstellar Gas , 2004, astro-ph/0403467.

[70]  C. Chiappini,et al.  Do Observed Metallicity Gradients of Early-Type Galaxies Support a Hybrid Formation Scenario? , 2005, astro-ph/0509142.

[71]  I. Chilingarian Evolution of dwarf early-type galaxies I. Spatially resolved stellar populations and internal kinematics of Virgo cluster dE/dS0 galaxies , 2008, 0812.3272.

[72]  A. Kaufer,et al.  Two distinct ancient components in the Sculptor Dwarf Spheroidal Galaxy: First Results from DART , 2004 .

[73]  W. Zeilinger,et al.  Embedded disks in Fornax dwarf elliptical galaxies , 2003, astro-ph/0301524.

[74]  L. Ho,et al.  A Reevaluation of the Excitation Mechanism of LINERs , 1993 .

[75]  Y. Shioya,et al.  Stellar Populations in Gas-rich Galaxy Mergers. II. Feedback Effects of Type Ia and Type II Supernovae , 1998, astro-ph/9811124.

[76]  N. W. Evans,et al.  A photometrically and kinematically distinct core in the Sextans dwarf spheroidal galaxy , 2004 .

[77]  M. Feast,et al.  Is there a metallicity gradient in the Large Magellanic Cloud , 2010 .

[78]  George F. Mitchell,et al.  The Puzzling Features of the Interstellar Medium in NGC 205 , 1998 .

[79]  J. Kormendy Families of ellipsoidal stellar systems and the formation of dwarf elliptical galaxies , 1985 .

[80]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[81]  G. Vaucouleurs Integrated Colors of Bright Galaxies in the u, b, V System. , 1961 .

[82]  Garching,et al.  Stellar population models of Lick indices with variable element abundance ratios , 2003 .

[83]  W. Zeilinger,et al.  Nearby early-type galaxies with ionized gas. III. Analysis of line-strength indices with new stellar , 2006, astro-ph/0609175.

[84]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[85]  G. Gavazzi,et al.  The HI content of early-type galaxies from the ALFALFA survey I. Catalogued HI sources in the Virgo cluster , 2007, 0709.2096.

[86]  D. Krajnović,et al.  HST observations of nuclear stellar disks , 2004, astro-ph/0409061.

[87]  Richard B. Larson,et al.  Dynamical models for the formation and evolution of spherical galaxies , 1973 .

[88]  W. Zeilinger,et al.  Toward a Solution for the Ca II Triplet Puzzle: Results from Dwarf Elliptical Galaxies , 2007, 0710.4123.

[89]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[90]  J. Peñarrubia,et al.  ERRATUM: “A UNIVERSAL MASS PROFILE FOR DWARF SPHEROIDAL GALAXIES?” (2009, ApJ, 704, 1274) , 2010 .

[91]  A comparison of stellar populations in galaxy spheroids across a wide range of Hubble types , 2002, astro-ph/0202390.

[92]  Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers , 2004, astro-ph/0408419.

[93]  S0 galaxies in Fornax: data and kinematics , 2006, astro-ph/0607434.

[94]  M. Lehnert,et al.  On the survival of metallicity gradients to major dry-mergers , 2009, 0903.2846.

[95]  P. T. de Zeeuw,et al.  Galaxy Mapping with the SAURON Integral-Field Spectrograph: The Star Formation History of NGC 4365 , 2000, astro-ph/0011254.

[96]  S. Tremaine,et al.  Kinematics of 10 Early-Type Galaxies from Hubble Space Telescope and Ground-based Spectroscopy , 2003, astro-ph/0306464.

[97]  LOCAL GROUP DWARF ELLIPTICAL GALAXIES. I. MAPPING THE DYNAMICS OF NGC 205 BEYOND THE TIDAL RADIUS , 2005, astro-ph/0509561.

[98]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[99]  W. Zeilinger,et al.  Evidence for a warm interstellar medium in Fornax dwarf elliptical galaxies¿ II. FCC032, FCC206 and FCCB729 , 2004 .

[100]  W. Zeilinger,et al.  Evidence for a warm ISM in Fornax dEs - II. FCC032, FCC206 and FCCB729 , 2004, astro-ph/0406543.

[101]  C. Chiappini,et al.  Abundance gradient slopes versus mass in spheroids: predictions by monolithic models , 2010, 1005.2154.

[102]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[103]  P. Prugniel,et al.  Hyperleda. I. Identification and designation of galaxies , 2003 .

[104]  Spain.,et al.  Stellar population gradients in Fornax cluster S0 galaxies: connecting bulge and disc evolution , 2011, 1103.4378.

[105]  France,et al.  New release of the ELODIE library: Version 3.1 , 2007 .

[106]  L. Young,et al.  The Neutral Interstellar Medium in Nearby Dwarf Galaxies. II. NGC 185, NGC 205, and NGC 147 , 1997 .

[107]  Thorsten Lisker,et al.  Virgo Cluster Early-Type Dwarf Galaxies with the Sloan Digital Sky Survey. III. Subpopulations: Distributions, Shapes, Origins , 2007, astro-ph/0701429.

[108]  A. M. Swinbank,et al.  Stellar population gradients in early-type cluster galaxies with VIMOS IFU* , 2008, 0807.3545.

[109]  W. Zeilinger,et al.  Formation and evolution of dwarf elliptical galaxies – II. Spatially resolved star formation histories , 2009, 0903.4393.

[110]  Yue Wu,et al.  ULySS: a full spectrum fitting package , 2009, 0903.2979.

[111]  Simulations of the formation and evolution of isolated dwarf galaxies , 2008, 0807.0397.

[112]  W. Zeilinger,et al.  Metallicity gradients: Mass dependency in dwarf elliptical galaxies , 2009, 0910.2643.

[113]  ORIGIN OF TWO DISTINCT POPULATIONS IN DWARF SPHEROIDAL GALAXIES , 2005, astro-ph/0509402.