Curvelet-domain preconditioned "wave-equation" depth-migration with sparseness and illumination constraints
暂无分享,去创建一个
[1] Daniel Trad,et al. Interpolation and multiple attenuation with migration operators , 2003 .
[2] Sverre Brandsberg-Dahl,et al. Focusing in dip and AVA compensation on scattering‐angle/azimuth common image gathers , 2003 .
[3] M. Sacchi,et al. Least‐squares wave‐equation migration for AVP/AVA inversion , 2003 .
[4] S. Mallat. A wavelet tour of signal processing , 1998 .
[5] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[6] G. Schuster,et al. Prestack migration deconvolution , 2001 .
[7] Felix J. Herrmann,et al. Multifractional splines: application to seismic imaging , 2003, SPIE Optics + Photonics.
[8] Paul Sava,et al. Offset and angle-domain common image-point gathers for shot-profile migration , 2002 .
[9] Gerard T. Schuster,et al. Poststack Migration Deconvolution , 1999 .
[10] Emmanuel J. Candès,et al. New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..
[11] D. Donoho. Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .
[12] D. J. Verschuur,et al. Separation of Primaries and Multiples by Non-Linear Estimation in the Curvelet Domain , 2004, 66th EAGE Conference & Exhibition.
[13] E. Candès,et al. Curvelets and Fourier Integral Operators , 2003 .
[14] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[15] J. Rickett. Illumination-based normalization for wave-equation depth migration , 2003 .