Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires.

Designing lasing wavelengths and modes is essential to the practical applications of nanowire (NW) lasers. Here, according to the localized photoluminescence spectra, we first demonstrate the ability to define lasing wavelengths over a wide range (up to 119 nm) based on an individual bandgap-graded CdSSe NW by forward cutting the NW from CdSe to CdS end. Furthermore, free spectral range (FSR) and modes of the obtained lasers could be controlled by backward cutting the NW from CdS to CdSe end step-by-step. Interestingly, single-mode NW laser with predefined lasing wavelength is realized in short NWs because of the strong mode competition and increase in FSR. Finally, the gain properties of the bandgap-graded NWs are investigated. The combination of wavelength and mode selectivity in NW lasers may provide a new platform for the next generation of integrated optoelectronic devices.

[1]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[2]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[3]  Q. Xiong,et al.  Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. , 2013, Nano letters.

[4]  Limin Tong,et al.  Semiconductor nanowire lasers , 2013 .

[5]  L. Tong,et al.  Multicolour laser from a single bandgap-graded CdSSe alloy nanoribbon. , 2013, Optics express.

[6]  C. Ning,et al.  Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. , 2013, Nano letters.

[7]  L. Tong,et al.  Bandgap‐Graded CdSxSe1–x Nanowires for High‐Performance Field‐Effect Transistors and Solar Cells , 2013, Advanced materials.

[8]  Jinyou Xu,et al.  Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires. , 2013, Nano letters.

[9]  Q. Xiong,et al.  Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. , 2013, Nano letters.

[10]  X. Liu,et al.  Wavelength Tunable CdSe Nanowire Lasers Based on the Absorption‐Emission‐Absorption Process , 2012, Advanced materials.

[11]  Limin Tong,et al.  Asymmetric light propagation in composition-graded semiconductor nanowires , 2012, Scientific Reports.

[12]  Chang-Hee Cho,et al.  All-optical active switching in individual semiconductor nanowires. , 2012, Nature nanotechnology.

[13]  Jeremy B. Wright,et al.  Single-mode GaN nanowire lasers. , 2012, Optics express.

[14]  C. Ning,et al.  Composition and Bandgap‐Graded Semiconductor Alloy Nanowires , 2012, Advances in Materials.

[15]  L. Tong,et al.  On-nanowire spatial band gap design for white light emission. , 2011, Nano letters.

[16]  Limin Tong,et al.  Single-nanowire single-mode laser. , 2011, Nano letters.

[17]  L. Tong,et al.  Spatial bandgap engineering along single alloy nanowires. , 2011, Journal of the American Chemical Society.

[18]  L. Tong,et al.  Nanowires/microfiber hybrid structure multicolor laser. , 2009, Optics express.

[19]  L. Tong,et al.  Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity , 2009 .

[20]  Ruibin Liu,et al.  Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. , 2009, Nano letters.

[21]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[22]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[23]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[24]  S. T. Lee,et al.  Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons , 2007 .

[25]  Peidong Yang,et al.  Semiconductor nanowire ring resonator laser. , 2006, Physical review letters.

[26]  E.J. Murphy,et al.  Tunable lasers in optical networks , 2006, Journal of Lightwave Technology.

[27]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[28]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[29]  Limin Tong,et al.  Assembly of silica nanowires on silica aerogels for microphotonic devices. , 2005, Nano letters.

[30]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[31]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[32]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[33]  M. Pascu,et al.  Tunable dye laser applications in environment pollution monitoring , 2001 .

[34]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[35]  T. Hänsch,et al.  High-Resolution Saturation Spectroscopy of the SodiumDLines with a Pulsed Tunable Dye Laser , 1971 .