tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing

[1]  Robert J. Weatheritt,et al.  Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. , 2020, Molecular cell.

[2]  Sheng Wang,et al.  Exploring the functional impact of alternative splicing on human protein isoforms using available annotation sources , 2019, Briefings Bioinform..

[3]  Eric L Van Nostrand,et al.  RBP-Maps enables robust generation of splicing regulatory maps , 2018, RNA.

[4]  J. Tsai,et al.  Contactin-1/F3 Regulates Neuronal Migration and Morphogenesis Through Modulating RhoA Activity , 2018, Front. Mol. Neurosci..

[5]  S. Jaffrey,et al.  Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease , 2018, Nature Reviews Neuroscience.

[6]  Kateryna D. Makova,et al.  Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon , 2018, Nature Communications.

[7]  P. Scheiffele,et al.  Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing. , 2018, Annual review of cell and developmental biology.

[8]  Yonggui Fu,et al.  Crosstalk between alternative polyadenylation and miRNAs in the regulation of protein translational efficiency , 2018, Genome research.

[9]  Albin Sandelin,et al.  IsoformSwitchAnalyzeR: Analysis of changes in genome-wide patterns of alternative splicing and its functional consequences , 2018, bioRxiv.

[10]  Jeremy R. B. Newman,et al.  Event Analysis: Using Transcript Events To Improve Estimates of Abundance in RNA-seq Data , 2018, G3: Genes, Genomes, Genetics.

[11]  M. Tress,et al.  Corrigendum: SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. , 2018, Genome research.

[12]  Shintaro Iwasaki,et al.  Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in Arabidopsis , 2018, Proceedings of the National Academy of Sciences.

[13]  B. Tian,et al.  Cellular stress alters 3′UTR landscape through alternative polyadenylation and isoform-specific degradation , 2018, Nature Communications.

[14]  Xiaohui Wu,et al.  APAtrap: identification and quantification of alternative polyadenylation sites from RNA-seq data , 2018, Bioinform..

[15]  Y. Chao,et al.  Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing , 2018, BMC Plant Biology.

[16]  Eunice Lee,et al.  How alternative splicing affects membrane-trafficking dynamics , 2018, Journal of Cell Science.

[17]  Dario Greco,et al.  IntEREst: intron-exon retention estimator , 2018, BMC Bioinformatics.

[18]  Quaid Morris,et al.  QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data , 2018, Genome Biology.

[19]  Miha Skalic,et al.  SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions , 2016, Genome Biology.

[20]  Xuegong Zhang,et al.  SEASTAR: systematic evaluation of alternative transcription start sites in RNA , 2018, Nucleic acids research.

[21]  Hagen U. Tilgner,et al.  Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome , 2018, Genome research.

[22]  Sebastien M. Weyn-Vanhentenryck,et al.  Precise temporal regulation of alternative splicing during neural development , 2018, Nature Communications.

[23]  Ana Conesa,et al.  Identification and visualization of differential isoform expression in RNA-seq time series , 2017, Bioinform..

[24]  Y. Dong,et al.  Biological functions of miR-590 and its role in carcinogenesis , 2017 .

[25]  Alexis Battle,et al.  Co-expression networks reveal the tissue-specific regulation of transcription and splicing , 2019 .

[26]  Adam Godzik,et al.  The Functional Impact of Alternative Splicing in Cancer. , 2017, Cell reports.

[27]  A. Godzik,et al.  The functional impact of alternative splicing in cancer , 2017, bioRxiv.

[28]  L. Tranchevent,et al.  Identification of protein features encoded by alternative exons using Exon Ontology. , 2017, Genome research.

[29]  M. Tress,et al.  Most Alternative Isoforms Are Not Functionally Important. , 2017, Trends in biochemical sciences.

[30]  F. Baralle,et al.  Alternative splicing as a regulator of development and tissue identity , 2017, Nature Reviews Molecular Cell Biology.

[31]  J. Ule,et al.  High-Resolution RNA Maps Suggest Common Principles of Splicing and Polyadenylation Regulation by TDP-43 , 2017, Cell reports.

[32]  V. Bansal,et al.  The landscape of human mutually exclusive splicing , 2017, bioRxiv.

[33]  Silvio C. E. Tosatto,et al.  MobiDB‐lite: fast and highly specific consensus prediction of intrinsic disorder in proteins , 2017, Bioinform..

[34]  E. Tseng,et al.  Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human , 2017, BMC Genomics.

[35]  Lennart Martens,et al.  1 SQANTI : extensive characterization of long read transcript sequences for quality control in 1 full-length transcriptome identification and quantification 2 3 , 2017 .

[36]  E. Eyras,et al.  IRFinder: assessing the impact of intron retention on mammalian gene expression , 2017, Genome Biology.

[37]  Paolo Piazza,et al.  Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis , 2017, F1000Research.

[38]  M. Tress,et al.  Alternative Splicing May Not Be the Key to Proteome Complexity. , 2017, Trends in biochemical sciences.

[39]  Xinyu Zhao,et al.  Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity , 2017, The Journal of Neuroscience.

[40]  K. Au,et al.  Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. , 2017, F1000Research.

[41]  B. Tian,et al.  Alternative polyadenylation of mRNA precursors , 2016, Nature Reviews Molecular Cell Biology.

[42]  Sika Zheng Alternative splicing and nonsense-mediated mRNA decay enforce neural specific gene expression , 2016, International Journal of Developmental Neuroscience.

[43]  C. Sette,et al.  Alternative splicing and cell survival: from tissue homeostasis to disease , 2016, Cell Death and Differentiation.

[44]  Alejandro P. Ugalde,et al.  Correction: 3'UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells , 2016, PLoS genetics.

[45]  Colin N. Dewey,et al.  Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq , 2016, Genome research.

[46]  Wei Chen,et al.  Pervasive isoform‐specific translational regulation via alternative transcription start sites in mammals , 2016, Molecular systems biology.

[47]  Tyson A. Clark,et al.  Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing , 2016, Nature Communications.

[48]  W. Tarn,et al.  RBM4 promotes neuronal differentiation and neurite outgrowth by modulating Numb isoform expression , 2016, Molecular biology of the cell.

[49]  Julie D Forman-Kay,et al.  Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications , 2016, The Journal of Biological Chemistry.

[50]  Gloria M. Sheynkman,et al.  Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing , 2016, Cell.

[51]  Ran Elkon,et al.  3’UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells , 2016, PLoS genetics.

[52]  M. Swanson,et al.  RNA mis-splicing in disease , 2015, Nature Reviews Genetics.

[53]  J. Valcárcel,et al.  The pathogenicity of splicing defects: mechanistic insights into pre‐mRNA processing inform novel therapeutic approaches , 2015, EMBO reports.

[54]  T. Jensen,et al.  Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes , 2015, Nature Reviews Molecular Cell Biology.

[55]  H. Dweep,et al.  miRWalk2.0: a comprehensive atlas of microRNA-target interactions , 2015, Nature Methods.

[56]  A. Conesa,et al.  Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package , 2015, Nucleic acids research.

[57]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[58]  T. Blauwkamp,et al.  Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events , 2015, Nature Biotechnology.

[59]  Stuart A. Newman,et al.  Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications , 2015, Front. Cell Dev. Biol..

[60]  Boqin Hu,et al.  CLIPdb: a CLIP-seq database for protein-RNA interactions , 2015, BMC Genomics.

[61]  N. Hattori,et al.  Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. , 2015, Human molecular genetics.

[62]  Russ P Carstens,et al.  Functional roles of alternative splicing factors in human disease , 2015, Wiley interdisciplinary reviews. RNA.

[63]  Anna Tramontano,et al.  3USS: a web server for detecting alternative 3′UTRs from RNA-seq experiments , 2015, Bioinform..

[64]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[65]  Robert J. Weatheritt,et al.  A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains , 2014, Cell.

[66]  Lan Lin,et al.  rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data , 2014, Proceedings of the National Academy of Sciences.

[67]  Wei Li,et al.  Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types , 2014, Nature Communications.

[68]  B. Frey,et al.  Widespread intron retention in mammals functionally tunes transcriptomes , 2014, Genome research.

[69]  J. Kessler,et al.  MicroRNAs participate in the murine oligodendroglial response to perinatal hypoxia-ischemia , 2014, Pediatric Research.

[70]  Ana Conesa,et al.  Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series , 2014, Bioinform..

[71]  N. Wei,et al.  SRSF10 Regulates Alternative Splicing and Is Required for Adipocyte Differentiation , 2014, Molecular and Cellular Biology.

[72]  Mihaela Zavolan,et al.  TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data , 2014, Bioinform..

[73]  Eric T. Wang,et al.  Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development , 2014, Nature Communications.

[74]  E. Berglund,et al.  Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system , 2014, Proceedings of the National Academy of Sciences.

[75]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[76]  H. Dyson,et al.  Intrinsically disordered proteins in cellular signalling and regulation , 2014, Nature Reviews Molecular Cell Biology.

[77]  Peter F. Stadler,et al.  TSSAR: TSS annotation regime for dRNA-seq data , 2014, BMC Bioinformatics.

[78]  J. Harrow,et al.  Assessment of transcript reconstruction methods for RNA-seq , 2013, Nature Methods.

[79]  M. Selbach,et al.  Orchestrated Intron Retention Regulates Normal Granulocyte Differentiation , 2013, Cell.

[80]  R. Elkon,et al.  Alternative cleavage and polyadenylation: extent, regulation and function , 2013, Nature Reviews Genetics.

[81]  J. Harrow,et al.  Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene , 2013, Genome Biology.

[82]  Eric T. Wang,et al.  MBNL proteins repress ES-cell-specific alternative splicing and reprogramming , 2013, Nature.

[83]  E. Lai,et al.  Widespread and extensive lengthening of 3′ UTRs in the mammalian brain , 2013, Genome research.

[84]  TaeHyung Kim,et al.  Distinct Types of Disorder in the Human Proteome: Functional Implications for Alternative Splicing , 2013, PLoS Comput. Biol..

[85]  Benjamin J. Blencowe,et al.  Dynamic Integration of Splicing within Gene Regulatory Pathways , 2013, Cell.

[86]  Y. Kitagishi,et al.  RUFY, Rab and Rap Family Proteins Involved in a Regulation of Cell Polarity and Membrane Trafficking , 2013, International journal of molecular sciences.

[87]  N. Webster,et al.  Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function , 2013, Nature Communications.

[88]  Alfonso Valencia,et al.  APPRIS: annotation of principal and alternative splice isoforms , 2012, Nucleic Acids Res..

[89]  S. Stamm,et al.  Function of alternative splicing. , 2013, Gene.

[90]  L. Buée,et al.  MBNL1 gene variants as modifiers of disease severity in myotonic dystrophy type 1 , 2013, Journal of Neurology.

[91]  Sarah C. Emerson,et al.  Length Bias Correction in Gene Ontology Enrichment Analysis Using Logistic Regression , 2012, PloS one.

[92]  Alex Bateman,et al.  Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs Rewires Protein Interaction Networks , 2012, Molecular cell.

[93]  Xinchen Wang,et al.  Tissue-specific alternative splicing remodels protein-protein interaction networks. , 2012, Molecular cell.

[94]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[95]  Sébastien Tempel Using and understanding RepeatMasker. , 2012, Methods in molecular biology.

[96]  Jean-Léon Thomas,et al.  A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells , 2011, Proceedings of the National Academy of Sciences.

[97]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[98]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[99]  L. Chasin,et al.  Context-dependent splicing regulation , 2011, RNA biology.

[100]  Jernej Ule,et al.  Understanding splicing regulation through RNA splicing maps , 2011, Trends in genetics : TIG.

[101]  J. Siegenthaler,et al.  Wnt Signaling Regulates Neuronal Differentiation of Cortical Intermediate Progenitors , 2011, The Journal of Neuroscience.

[102]  Paola Bonizzoni,et al.  ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing , 2010, Nucleic Acids Res..

[103]  G. Cingolani,et al.  Phosphorylation meets nuclear import: a review , 2010, Cell Communication and Signaling.

[104]  E. Wang,et al.  Analysis and design of RNA sequencing experiments for identifying isoform regulation , 2010, Nature Methods.

[105]  Joaquín Dopazo,et al.  Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling , 2010, Nucleic Acids Res..

[106]  D. Hoekstra,et al.  On the biogenesis of myelin membranes: Sorting, trafficking and cell polarity , 2010, FEBS letters.

[107]  J. Dopazo,et al.  Multidimensional Gene Set Analysis of Genomic Data , 2010, PloS one.

[108]  Y. Kitagishi,et al.  Rab5(Q79L) interacts with the carboxyl terminus of RUFY3 , 2010, International journal of biological sciences.

[109]  Ernesto Picardi,et al.  UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs , 2009, Nucleic Acids Res..

[110]  R. Fisher On the Interpretation of χ2 from Contingency Tables, and the Calculation of P , 2010 .

[111]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[112]  Matthew D. Young,et al.  Gene ontology analysis for RNA-seq: accounting for selection bias , 2010, Genome Biology.

[113]  M. Tomita,et al.  Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs , 2009, Proceedings of the National Academy of Sciences.

[114]  L. Hurst,et al.  Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay , 2009, BMC Biology.

[115]  Kazutada Watanabe,et al.  Contactins: emerging key roles in the development and function of the nervous system. , 2009, Cell adhesion & migration.

[116]  B. Frey,et al.  Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing , 2008, Nature Genetics.

[117]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[118]  P. Bohjanen,et al.  Posttranscriptional regulation of gene networks by GU-rich elements and CELF proteins , 2008, RNA biology.

[119]  M. Mattson,et al.  Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells , 2008, BMC Developmental Biology.

[120]  J. Côté,et al.  TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules , 2008, Human molecular genetics.

[121]  G. Karypis,et al.  Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1. , 2008, Molecular cell.

[122]  D. Hoekstra,et al.  Polarity Development in Oligodendrocytes: Sorting and Trafficking of Myelin Components , 2008, Journal of Molecular Neuroscience.

[123]  C. Guthrie,et al.  Rapid, transcript-specific changes in splicing in response to environmental stress. , 2007, Molecular cell.

[124]  Brad T. Sherman,et al.  The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists , 2007, Genome Biology.

[125]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2006, Nucleic Acids Research.

[126]  S. Nuzhdin,et al.  Sex-specific expression of alternative transcripts in Drosophila , 2006, Genome Biology.

[127]  L. Reichardt,et al.  p120 Catenin Regulates Dendritic Spine and Synapse Development through Rho-Family GTPases and Cadherins , 2006, Neuron.

[128]  M. Swanson,et al.  Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. , 2006, Human molecular genetics.

[129]  A Keith Dunker,et al.  Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[132]  S. Stamm,et al.  Function of Alternative Splicing , 2004 .

[133]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[134]  A. Hodel,et al.  Regulation of Nuclear Import by Phosphorylation Adjacent to Nuclear Localization Signals* , 2004, Journal of Biological Chemistry.

[135]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[136]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[137]  M. Uittenbogaard,et al.  Expression of the bHLH transcription factor Tcf12 (ME1) gene is linked to the expansion of precursor cell populations during neurogenesis. , 2002, Brain research. Gene expression patterns.

[138]  M. Swanson,et al.  Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. , 2001, Human molecular genetics.

[139]  E Pauws,et al.  Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. , 2001, Nucleic acids research.

[140]  K. Nave,et al.  Membrane traffic in myelinating oligodendrocytes , 2001, Microscopy research and technique.

[141]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[142]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[143]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[144]  R. Fisher On the Interpretation of χ2 from Contingency Tables, and the Calculation of P , 2018, Journal of the Royal Statistical Society Series A (Statistics in Society).