A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm

Abstract For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.

[1]  Dan Winske,et al.  Kinetic Alfvén waves and electron physics. I Generation from ion-ion streaming , 2007 .

[2]  Bo-nan Jiang,et al.  The Origin of Spurious Solutions in Computational Electromagnetics , 1996 .

[3]  Luis Chacón,et al.  An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm , 2013, Comput. Phys. Commun..

[4]  P. Raviart,et al.  A hierarchy of approximate models for the Maxwell equations , 1996 .

[5]  Akira Hasegawa,et al.  ONE-DIMENSIONAL PLASMA MODEL IN THE PRESENCE OF A MAGNETIC FIELD. , 1968 .

[6]  Luis Chacón,et al.  Development of a Consistent and Stable Fully Implicit Moment Method for Vlasov-Ampère Particle in Cell (PIC) System , 2013, SIAM J. Sci. Comput..

[7]  M. Gibbons,et al.  The Darwin Direct Implicit Particle-in-Cell (DADIPIC) Method for Simulation of Low Frequency Plasma Phenomena , 1995 .

[8]  Pierre Degond,et al.  An analysis of the Darwin model of approximation to Maxwell’s equations , 1992 .

[9]  D. Hewett,et al.  Electromagnetic direct implicit plasma simulation , 1987 .

[10]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[11]  Dennis W. Hewett,et al.  Low-frequency electromagnetic (Darwin) applications in plasma simulation , 1994 .

[12]  Thomas A. Manteuffel,et al.  Nested Iteration and First-Order Systems Least Squares for a Two-Fluid Electromagnetic Darwin Model , 2015, SIAM J. Sci. Comput..

[13]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[14]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[15]  C. Nielson,et al.  Particle-code models in the nonradiative limit , 1976 .

[16]  Holger Schmitz,et al.  Darwin-Vlasov simulations of magnetised plasmas , 2006, J. Comput. Phys..

[17]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[18]  D. C. Barnes,et al.  A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes , 2013, J. Comput. Phys..

[19]  Dennis W. Hewett,et al.  Elimination of electromagnetic radiation in plasma simulation: The Darwin or magneto inductive approximation , 1985 .

[20]  J. Denavit,et al.  Time-filtering particle simulations with ωpe Δt ⪢ 1 , 1981 .

[21]  A. Bruce Langdon Some Electromagnetic Plasma Simulation Methods and Their Noise Properties , 1972 .

[22]  Luis Chacón,et al.  An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm , 2011, J. Comput. Phys..

[23]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[24]  Ronald H. Cohen,et al.  An implicit “drift-Lorentz” mover for plasma and beam simulations , 2009 .

[25]  R. J. Mason,et al.  Implicit moment particle simulation of plasmas , 1981 .

[26]  Thomas Mussenbrock,et al.  Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation , 2012, 1208.3627.

[27]  Ronald C. Davidson,et al.  Nonlinear perturbative electromagnetic (Darwin) particle simulation of high intensity beams , 2001 .

[28]  John M. Dawson,et al.  A self-consistent magnetostatic particle code for numerical simulation of plasmas , 1977 .

[29]  Guangye Chen,et al.  An energy-conserving nonlinearly converged implicit particle-in-cell (PIC) algorithm , 2010 .

[30]  Harold Weitzner,et al.  Boundary conditions for the Darwin model , 1989 .

[31]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[32]  J. N. Leboeuf,et al.  Implicit Particle Simulation of Electromagnetic Plasma Phenomena , 1986 .

[33]  Luis Chacón,et al.  An analytical particle mover for the charge- and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm , 2013, J. Comput. Phys..

[34]  D. C. Barnes,et al.  Direct Implicit Plasma Simulation , 1985 .

[35]  Luis Chacón,et al.  Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations , 2013, J. Comput. Phys..

[36]  J. W. Humberston Classical mechanics , 1980, Nature.

[37]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[38]  J. U. Brackbill,et al.  Accurate Numerical Solution of Charged Particle Motion in a Magnetic Field , 1995 .

[39]  Brendan B. Godfrey,et al.  Numerical Cherenkov instabilities in electromagnetic particle codes , 1974 .

[40]  J. T. ON THE ROLE OF INVOLUTIONS IN THE DISCONTINUOUS GALERKIN DISCRETIZATION OF MAXWELL AND MAGNETOHYDRODYNAMIC SYSTEMS , 2005 .

[41]  P. Pani,et al.  GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .

[42]  John D. Villasenor,et al.  Rigorous charge conservation for local electromagnetic field solvers , 1992 .

[43]  John Ambrosiano,et al.  A finite element formulation of the Darwin PIC model for use on unstructured grids , 1995 .

[44]  Jeremiah Brackbill,et al.  An implicit method for electromagnetic plasma simulation in two dimensions , 1982 .

[45]  William Daughton,et al.  Electromagnetic proton/proton instabilities in the solar wind , 1998 .

[46]  Bruce I. Cohen,et al.  Direct implicit large time-step particle simulation of plasmas , 1983 .

[47]  R. Morse,et al.  NUMERICAL SIMULATION OF THE WEIBEL INSTABILITY IN ONE AND TWO DIMENSIONS. , 1971 .

[48]  Bruce I. Cohen,et al.  Hybrid simulations of quasineutral phenomena in magnetized plasma , 1978 .

[49]  T. M. Antonsen,et al.  Study of hot electron beam transport in high density plasma using 3D hybrid-Darwin code , 2004, Comput. Phys. Commun..

[50]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[51]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[52]  J. U. Brackbill,et al.  CELEST1D: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation , 1992 .

[53]  Allan N. Kaufman,et al.  The Darwin Model as a Tool for Electromagnetic Plasma Simulation , 1971 .

[54]  Jeremiah Brackbill,et al.  Simulation of Low-Frequency, Electromagnetic Phenomena in Plasmas , 1985 .

[55]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[56]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[57]  J. U. Brackbill,et al.  Implicit adaptive grid plasma simulation , 1997 .

[58]  Dan Winske,et al.  Kinetic Alfven Waves and Electron Physics in Oblique Slow Shocks , 2007 .

[59]  Amit Apte,et al.  A unified approach to the Darwin approximation , 2007 .