TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors

A flexible and solid-state supercapacitor device based on TiO2@C core–shell nanowires has been developed and exhibited excellent flexibility—it can even be folded and twisted without sacrificing electrochemical properties—and good electrochemical performance with a maximum energy density of 0.011 mW h cm−3.

[1]  Y. Tong,et al.  Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors , 2012 .

[2]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[3]  Zheng Hu,et al.  Carbon Nanocages as Supercapacitor Electrode Materials , 2012, Advanced materials.

[4]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[5]  Zhixiang Wei,et al.  Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites , 2011 .

[6]  Woong Kim,et al.  High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes , 2012, Nanotechnology.

[7]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[8]  Gleb Yushin,et al.  Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes , 2012 .

[9]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[10]  Yun Suk Huh,et al.  High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. , 2012, Nanoscale.

[11]  Qiao-juan Gong,et al.  Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide , 2012 .

[12]  F. Meng,et al.  Sub‐Micrometer‐Thick All‐Solid‐State Supercapacitors with High Power and Energy Densities , 2011, Advanced materials.

[13]  Subodh G. Mhaisalkar,et al.  Printable photo-supercapacitor using single-walled carbon nanotubes , 2011 .

[14]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[15]  Yongyao Xia,et al.  Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titanium‐Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor , 2011 .

[16]  G. Shi,et al.  Graphene Hydrogels Deposited in Nickel Foams for High‐Rate Electrochemical Capacitors , 2012, Advanced materials.

[17]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[18]  Li Zhang,et al.  Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability , 2011 .

[19]  N. Xia,et al.  Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties , 2011 .

[20]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[21]  Bobby G. Sumpter,et al.  Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors , 2010 .

[22]  E. Sudoł,et al.  XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation , 2001 .

[23]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[24]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[25]  Hongliang Li,et al.  A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes , 2011 .

[26]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[27]  G. Cui,et al.  One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage , 2011 .

[28]  Y. Tong,et al.  Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[29]  Chi-Hwan Han,et al.  All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes , 2012, Nanotechnology.

[30]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[31]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[32]  Xiaohong Liu,et al.  Flexible graphene/MnO2 composite papers for supercapacitor electrodes , 2011 .

[33]  Zhang Lan,et al.  A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor , 2012 .

[34]  Cunjiang Yu,et al.  Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms , 2009, Advanced materials.